

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A SYSTEMS ANALYSIS OF STRIKE NAVAL AVIATION
TRAINING

by

Tyler Y. Nekomoto

June 2013

Thesis Advisor: Matthew Boensel
Co-Advisor: Ronald Giachetti

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
A SYSTEMS ANALYSIS OF STRIKE NAVAL AVIATION TRAINING

5. FUNDING NUMBERS

6. AUTHOR(S) Tyler Y. Nekomoto
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

The Commander Naval Air Forces is analyzing the entire Naval Aviation training process to deliver the same quality
of training but at a lower cost. This thesis documents the Systems Engineering process completed to conceive, design,
and develop a desktop model that supports the investigation of training alternatives. The Naval Aviation Proficiency
Analysis model incorporates the General Aviator Learning Equation methodology developed by the Naval Air
Warfare Center Training Systems Divisions’ Human Performance Analysis and Instructional Systems Division into a
user-friendly self-automated spreadsheet model. It analyzes downloading efforts—moving blocks of flights or
simulators from a phase with higher platform operational cost to one with lower platform operational cost—and
highlights the effects that downloading has on cost, hour, and skill proficiency differences across all pipeline skills.
The next steps are to incorporate offloading (flights to simulators) and find optimal training solutions by incorporating
an after-market solver.

14. SUBJECT TERMS Naval Aviation, Model, Strike Fighter Naval Aviation Training, Aviation
Training, Aviation Pipeline, Pilot Training, Naval Flight Officer Training

15. NUMBER OF
PAGES

149
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A SYSTEMS ANALYSIS OF STRIKE NAVAL AVIATION TRAINING

Tyler Y. Nekomoto
Commander, United States Navy

B.S., University of Colorado, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2013

Author: Tyler Y. Nekomoto

Approved by: Matthew Boensel
Thesis Advisor

Ronald Giachetti
Thesis Co-Advisor

Cliff Whitcomb
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Commander Naval Air Forces is analyzing the entire Naval Aviation training process

to deliver the same quality of training but at a lower cost. This thesis documents the

Systems Engineering process completed to conceive, design, and develop a desktop

model that supports the investigation of training alternatives. The Naval Aviation

Proficiency Analysis model incorporates the General Aviator Learning Equation

methodology developed by the Naval Air Warfare Center Training Systems Divisions’

Human Performance Analysis and Instructional Systems Division into a user-friendly

self-automated spreadsheet model. It analyzes downloading efforts—moving blocks of

flights or simulators from a phase with higher platform operational cost to one with lower

platform operational cost—and highlights the effects that downloading has on cost, hour,

and skill proficiency differences across all pipeline skills. The next steps are to

incorporate offloading (flights to simulators) and find optimal training solutions by

incorporating an after-market solver.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I.! INTRODUCTION ... 1!
A.! THESIS SCOPE .. 1!
B.! BACKGROUND ... 1!

1.! Organizational Structure of Naval Aviation Training 1!
2.! Big Business/Big Budget ... 3!
3.! Total Ownership Cost Optimization ... 6!

a.! Organizations and Objectives .. 6!
b.! New Grading Convention Supporting the Initiative 7!
c.! Cost-reduction Techniques .. 7!
d.! General Aviator Learning Equation (GALE)

Methodology ... 9!
C.! STRIKE PIPELINE BREAKDOWN ... 12!

II.! CONCEPT STAGE .. 15!
A.! ESTABLISHING CAPABILITY AND FUNCTIONALITY 15!

1.! System Capabilities ... 15!
2.! NAPA Model Functional Analysis ... 15!

B.! REQUIREMENTS DEFINITION AND ANALYSIS 17!
1.! Software Constraints .. 18!
2.! Methodology Limitations ... 19!
3.! Data limitations ... 19!
4.! Assumptions ... 19!

C.! SELECTING A GUIDING PROCESS MODEL 22!
D.! OPERATIONAL CONCEPT .. 23!

1.! Use-Case 1: Analyzing a Specific Training Scenario 23!
2.! Use-Case 2: Searching for a Training Scenario That Provides

Desired Proficiency Levels ... 23!
III.! DESIGN AND DEVELOPMENT STAGE ... 25!

A.! MODEL DESIGN ... 25!
1.! Industry Best Practices for Application Design/Development 25!
2.! Design Concept .. 26!
3.! Design Framework .. 26!
4.! Coding .. 28!

B.! MODEL DEVELOPMENT ... 29!
C.! VERIFICATION AND VALIDATION .. 30!

1.! Verifying Requirements Were Met ... 30!
2.! Verifying Model Performance ... 31!
3.! Stakeholder Model Validation ... 31!

IV.! CONCLUSIONS ... 33!
V.! AREAS FOR FURTHER RESEARCH .. 37!

A.! SUPPORT OF OFFLOADING ... 37!

 viii

B.! TRAINING OPTIMIZATION .. 37!
C.! ALTERNATIVE METHODOLOGIES FOR ANALYSIS 37!

APPENDIX A: FUNCTIONAL ANALYSIS OF NAVAL AVIATION TRAINING
(STRIKE PIPELINE) ... 39!

APPENDIX B: ORIGINAL USER NEEDS STATEMENT AND INITIAL
CONCEPT OF OPERATIONS ... 43!
A.! USER NEEDS .. 43!
B.! OPERATIONAL CONCEPT: DATA FLOW ... 44!

APPENDIX C: MODEL PROTOTYPES .. 47!
A.! THE FIRST PROTOTYPE ... 47!
B.! THE SECOND PROTOTYPE ... 50!

APPENDIX D: FULL DESCRIPTION OF NAVAL AVIATION PROFICIENCY
ANALYSIS MODEL .. 61!
A.! FINAL PAGE DESIGNS ... 61!

1.! Pages Available When Creating A New Model 61!
2.! The Parameters Page .. 66!
3.! The MasterDB Page .. 68!
4.! Phase Models and Download Page .. 72!

B.! MODEL OUTPUTS .. 76!
1.! Training Pipeline Baseline Output (Strike Example) 76!
2.! Downloading Example .. 77!
3.! Maintaining Threshold Levels ... 82!

APPENDIX E: COMPLETE VBA APPLICATION CODE .. 87!
APPENDIX F: REQUIREMENT / ELEMENT MAPPING .. 125!
LIST OF REFERENCES ... 127!
INITIAL DISTRIBUTION LIST .. 129!

 ix

LIST OF FIGURES

! Organizational Chart of Naval Aviation Training .. 2!Figure 1.
! Current Fleet Replacement Squadrons and Locations for Naval Aviators Figure 2.

(From Chief of Naval Air Training 2012) .. 3!
! NFO Training Pipeline (From Chief of Naval Air Training 2012) 4!Figure 3.
! Naval Aviator Training Pipeline (From Chief of Naval Air Training 2012) 5!Figure 4.
! Example of GALE Proficiency Curves (From Joseph Sheehan, pers. Figure 5.

comm.) .. 11!
! NAPA Model IDEF0 .. 16!Figure 6.
! NAPA Model Functional Decomposition ... 17!Figure 7.
! Tailored Waterfall Process For NAPA Modeling ... 22!Figure 8.
! Basic Model Design Framework .. 27!Figure 9.
! Top Level IDEF0 Model of Naval Aviation Training 39!Figure 10.
! IDEF0 Detailed Model of the Strike Pipeline for Naval Aviators 40!Figure 11.
! Original Stakeholder Needs Documentation (From Joseph Sheehan, pers. Figure 12.

comm.) .. 43!
! User Concept of Operations (After Joseph Sheehan, 2012 pers. comm.) 44!Figure 13.
! Example of First Prototype Layout ... 48!Figure 14.
! First Prototype Output Example ... 49!Figure 15.
! Config Page For Second Prototype ... 51!Figure 16.
! Parameters Page for Second Prototype (Partial Example) 53!Figure 17.
! Second Prototype MasterDB (Partial Example) ... 55!Figure 18.
! Second Prototype Download Page (Partial Example) 56!Figure 19.
! Second Prototype Phase Model (Partial Example) ... 57!Figure 20.
! Skill Proficiency Output of Second Prototype .. 59!Figure 21.
! NAPA Model Directions Page .. 62!Figure 22.
! Drop Down List Page .. 63!Figure 23.
! CONFIG Page Part I: Phases, Platforms, and Throughput 64!Figure 24.
! CONFIG Page Part II: Skills, Proficiency Thresholds, and Phase Figure 25.

Functions ... 65!
! Parameters Page Part I: Baseline Proficiency Table 66!Figure 26.
! Parameters Page Part II: Sample (1 of 4) Media Degrader Tables 67!Figure 27.
! Initial MasterDB Page ... 69!Figure 28.
! First 30 Blocks of Strike Master Database ... 71!Figure 29.
! Initial Phase Model Interface Example ... 73!Figure 30.
! Initial Download Page Interface ... 75!Figure 31.
! NAPA Model Baseline Proficiency Table .. 76!Figure 32.
! NAPA Model Output of Baseline Skill Proficiencies 76!Figure 33.
! Partial View of Download Page Contents During Scenario Analysis 78!Figure 34.
! Portion of Download Page Depicting Downloaded BFM Blocks from the Figure 35.

FRS to Advanced .. 79!
! Download Page What If Chart: Skill Proficiency Levels Resulting From Figure 36.

Downloaded Blocks .. 80!

 x

! Download Page Cost Table and Hours Table Resulting From Downloaded Figure 37.
Blocks ... 81!

! Download Page Proficiency Table and Annual Cost Difference Resulting Figure 38.
From Downloaded Blocks .. 81!

! Partial View of Download Page Contents .. 83!Figure 39.
! Original Download Scenario (Top) and Altered Scenario to Maintain Figure 40.

Minimum Proficiency Values (Bottom) ... 84!
! Download Page What If Chart Output .. 85!Figure 41.
! Download Page Cost Table and Hour Table for Threshold Example 85!Figure 42.
! Download Page Proficiency Table and Annual Cost Difference for Figure 43.

Threshold Example ... 86!

 xi

LIST OF TABLES

Table 1.! Cost Per Flight Hour of Platforms in the Strike Pipeline 8!
Table 2.! Assumptions For Model Creation ... 20!
Table 3.! Function / Requirement Mapping ... 21!
Table 4.! NAPA Model Elements Mapped to Requirements (Part 1) 125!
Table 5.! NAPA Model Elements Mapped to Requirements (Part 2) 126!

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BI Basic Instruments Flight Stage

CNAF Commander Naval Air Forces

CNATRA Commander Naval Aviation Training

FAM Familiarization Flight Stage

FORM Formation Flight Stage

FRS Fleet Replacement Squadron

GALE General Aviation Learning Equation

HP/ISD Human Performance Analysis and Instructional Systems Division
of NAWCTSD

INCOSE International Council on Systems Engineering

KSAs Knowledge, Skills, and Abilities

NAE Naval Aviation Enterprise

NAWCTSD Naval Air Warfare Command Training Systems Division

PA Precision Aerobatics Flight Stage

PMA-273 Naval Undergraduate Flight Training Systems Program Office

RI Radio Instruments Flight Stage

SE Systems Engineering

SNA Student Naval Aviator

SNFO Student Naval Flight Officer

TRACOM Training Command

TRAWING Training Air Wing

T&R Training and Readiness

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

In the present constrained financial environment, Department of Defense is seeking areas

to implement financial efficiencies. While searching for cost-reduction opportunities, the

Commander of Naval Air Forces initiated an end-to-end analysis of Naval Aviation

training. To support this, the Human Performance Analysis and Instructional Systems

Division of Naval Air Warfare Center Training Systems Division (NAWCTSD)

requested a desktop model capable of analyzing potential syllabus changes for the cost

reduction effort. The model must compare baseline training syllabi against altered ones to

highlight the difference in skill proficiency and cost savings from those alterations.

The Naval Aviation Proficiency Analysis (NAPA) model was conceived,

designed, and implemented in Microsoft Excel, using Visual Basic for Applications, in

response to this need. The systems approach taken to complete this effort followed a

modified waterfall process to guide development of the model. Systems Engineering best

practices produced a model capable of satisfying user needs, while providing required

system behaviors needed to facilitate Naval Aviation training analysis.

NAPA is suited to run on any computer with Microsoft Excel (2007 or later)

installed. Its extensible architecture supports all training pipelines, and it has been

designed to support alternative analysis efforts in the future. NAPA provides the two

capabilities required by the primary stakeholder: (1) to determine the overall effect that

hour reductions or training alterations have on the overall proficiency of the graduating

aircrew; and (2) to identify training combinations that satisfy required proficiency levels

at the desired cost. The NAPA model is currently in use by NAWCTSD HP/ISD.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank my loving wife, Mina: Your unconditional love and support

throughout this process made all the difference. Without you, I would not be where I am

today. To my sons, Tyson and TJ: Thank you for giving up your time with Daddy to

allow me to finish.

I would also like to thank my close friend and squadron-mate LCDR Bill “R2”

Evans for all your help strengthening the model code: Without your help, the model

would run slower, be less effective, and be extremely fragile. Thanks for all of your

assistance.

To Dr. Jennifer Fowlkes and Dr. Joseph Sheehan from the Human Performance

Analysis and Instructional Systems Division at NAWCTSD: Thank you for your

patience, time, and dedication to finding the best way to train naval aviators. You are

great Americans.

Special thanks to Professor Matt Boensel and Professor Ron Giachetti for guiding

my thesis effort. I appreciate the candid feedback and insightful conversations while

working on this project.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. THESIS SCOPE

Today’s poor financial environment stresses every governmental program. As
budgets incorporate drastic reductions, analysts scramble to provide alternatives to
minimize degradation to our war-fighting capability.

While searching for areas capable of supporting cost reductions, the Commander
of Naval Air Forces (CNAF) initiated a “Street-to-Fleet” analysis of Naval Aviation
training. The Human Performance Analysis and Instructional Systems Division (HP/ISD)
of the Naval Air Warfare Center Training Systems Division (NAWCTSD) has been
supporting this analysis from inception and needs a desktop model to support their
analysis efforts. NAWCTSD HP/ISD started with the Strike training pipeline with the
intent of applying the same methodology to other training pipelines in the future.
NAWCTSD HP/ISD has compiled data for this pipeline and identified a desired
methodology for analysis, but has not incorporated them into an automated, easy-to-use
model, capable of quickly analyzing scenarios that decision-makers want to investigate.

This thesis documents the Systems Engineering (SE) process completed to
conceive, design, and develop a desktop model capable of supporting the investigation of
variations in the way the Navy currently conducts aviation training. Before describing
specifics of the effort, some background information will help place this effort in context.

B. BACKGROUND

1. Organizational Structure of Naval Aviation Training

Naval Aviator and Naval Flight Officer (NFO) training and production are
currently conducted by seventeen Training Command (TRACOM) squadrons, aligned
under five Training Air Wings (TRAWINGs) located at five Naval Air Stations in the
southeastern United States (Chief of Naval Air Training 2012). Although the ultimate
responsibility to provide trained aircrew to the Fleet rests with Commander, Naval Air
Forces (CNAF), it is accomplished through a relationship with the Chief of Naval Air
Training (CNATRA), the TRACOM, and the various platform Fleet Replacement
Squadrons (FRSs) seen in Figure 1.

 2

 Organizational Chart of Naval Aviation Training Figure 1.

CNATRA is aligned under Commander, Naval Air Force, Pacific Fleet and

CNAF–in the Naval Aviation Enterprise (NAE) concept. CNATRA also serves as the

CNAF Deputy Commander for training, granting CNATRA the authority to orchestrate

and manage the full spectrum of the training continuum–from student induction through

the completion of FRS training (Chief of Naval Air Training 2012). FRS training

becomes platform dependent and is provided at locations shown in Figure 2.

 3

 Current Fleet Replacement Squadrons and Locations for Naval Aviators Figure 2.

(From Chief of Naval Air Training 2012)

According to CNATRA, having the ability to manage the entire continuum

enables leadership and training practitioners to design and optimize
training content and flow across all phases and pipelines of the entire
training spectrum to ensure the right training is conducted at the right
level. Additionally, this continuum and alignment ensures the most
effective and efficient training organization is in place to achieve optimal
student aviator time to train. This continuum and alignment ultimately
ensures the production of the world’s finest Aerial Warriors for the
world’s finest Air Force – the Naval Air Force. A Naval Air Force made
up of Naval Aviators and NFOs, who can think, perform, Excel under
pressure, and deliver in the most demanding aviation environment—
projecting power ashore or at sea from the decks of aircraft carriers both
day and night.(2012)

2. Big Business/Big Budget

CNATRA’s annual flight budget for training is in excess of $575 million. A little

more than 1,300 instructors fly approximately 750 TRACOM aircraft over 350,000 flight

hours in order to provide slightly more than 1,500 pilots and NFOs to the Fleet each year.

CNATRA operates almost a third of the Navy’s aircraft inventory and accounts for nearly

a third of its annual flight hours (Chief of Naval Air Training 2012).

 4

CNATRA fulfills the needs of the Fleet through various training pipelines. The

NFO pipeline / aircraft selection occurs throughout the continuum as shown in Figure 3

 NFO Training Pipeline (From Chief of Naval Air Training 2012) Figure 3.

After Primary, SNFOs selected to fly as a navigator in a large, multi-engine

aircraft, report directly to their selected platform FRS while the rest of the SNFOs

continue on to the tactical (Intermediate) phase of training. Upon completion of

Intermediate, SNFOs selected for E-2Cs report directly to the FRS, while Strike and

Strike/Fighter SNFOs continue on to advanced training in the T-45C Goshawk.

Student Naval Aviators (SNAs) are selected for Maritime (multi-engine prop), E-

2/C-2, Rotary (helicopters), Strike (jets), and the E-6 TACAMO after Primary flight

training. Follow-on platforms are pipeline specific and can be seen in Figure 4.

 5

 Naval Aviator Training Pipeline (From Chief of Naval Air Training 2012) Figure 4.

 6

According to CNATRA’s Assistant Chief of Staff for Resources (N8), the FY11 cost

to train a Naval Aviator through the TRACOM Strike syllabus was just over $1.1 million

dollars (personal communication, October 29, 2012). FRS costs would raise that number

even higher before a Fleet aviator was produced.

3. Total Ownership Cost Optimization

a. Organizations and Objectives

The Director of Air Warfare (N88) initiated a Total Ownership Cost

(TOC) optimization objective in 2011 to determine if efficiencies could be found in

aviation training. Supporting this initiative, the Program Office for Undergraduate Flight

Systems (PMA-273) worked with CNAF and CNATRA to redefine the training pipelines

and associated syllabi. Their goal was simple—to provide the Fleet with a better trained

aviator at a lower cost.

PMA-273 selected the Strike pipeline as the first training pipeline for

analysis with the intent of applying the same methodology to the rest of the training

pipelines after proven success. PMA-273 coordinated with NAWCTSD HP/ISD to set

objectives for the TOC initiative. According to NAWCTSD HP/ISDs lead scientist, Dr.

Joseph Sheehan, in a technical approach overview brief given in Naval Air Station

Fallon, NV on June 12, 2012, the objectives were to:

• Develop a set of Fleet-supportive, generalizable skills

• Develop a process for understanding and evaluating the baseline
training continuum for NAE skills within multiple training
pipelines

• Develop a semi-automated system to predict the outcomes of
proposed solutions

• Execute process on representative Type/Model/Series (T/M/S)
aviation platforms.

The first two objectives have since been accomplished. This thesis focused

on the third objective—to develop a semi-automated model capable of supporting

analysis efforts. The model would explore the effects of re-allocating hours across the

continuum on both cost and aircrew proficiency. According to Dr. Sheehan, the model

 7

would provide two main capabilities; determining the overall effect alterations in training

hours may have on the overall proficiency of graduating aircrew; and identifying training

combinations that satisfy the utilization of different platforms to achieve the desired cost

and proficiency levels (Teleconference July 23, 2012).

b. New Grading Convention Supporting the Initiative

In a parallel effort, CNATRA was finalizing a new grading convention

that provided the framework to understand and evaluate the baseline training system.

CNATRA retired the old Navy Standard Score Grading (NSSG) convention, in favor of

the new Multi-Service Pilot and NFO Training System (MPTS/MNTS).

With the NSSG convention, grades were assigned to specific flight

objectives but provided limited description of the overall proficiency gain of desired

skills across the continuum. As such, when a student was flagged with a signal of

difficulty, it was challenging to identify occurrences of related deficiencies in a timely

manner (Chief of Naval Air Training 2012). In other words, skill proficiency gain was

not traceable throughout the pipeline.

The MPTS/MNTS convention breaks each stage of training down into

carefully designed training blocks which, in turn, incrementally build and refine a

baseline set of required skills (Chief of Naval Air Training 2012). The training blocks

satisfy learning objectives that support task lists and functions within each pipeline—

ultimately building proficiency in the identified pipeline skills. The knowledge, skills,

and abilities (KSAs) developed throughout the continuum are also monitored, allowing

common threads in student deficiencies to be identified and tracked more effectively. The

TOC optimization initiative leveraged the new modular framework of the training

continuum and treats the training blocks as movable pieces—capable of being

“downloaded” or “offloaded” across the training continuum.

c. Cost-reduction Techniques

If a training efficiency is to be considered, it must provide a reduction in

the overall cost-to-train while not allowing skill proficiency to drop below desired levels.

 8

According to U.S. Fleet Forces Command N02 representative CDR William Mallory,

Table 1 shows the FY12 operating cost per flight hour in U.S. dollars of all platforms

currently in the Strike pipeline (personal communication, September 4, 2012).

Table 1. Cost Per Flight Hour of Platforms in the Strike Pipeline

Downloading is a simple concept – fly sorties in platforms that are cheaper

to operate. In the Strike example, flights normally flown in an F/A-18 Hornet or

Superhornet would be moved to a T-45C Goshawk or a T-6A Texan II to reduce the cost

to complete them. These cost efficiencies don’t come without a trade-off. Platforms with

lower operational cost are typically platforms with less capability. To address this

capability degradation, a downloaded sortie may require more flight hours in a lower cost

platform to achieve the same KSA achievement.

Similar to downloading, the concept of offloading attempts to minimize

cost while maintaining a required proficiency level, but accomplishes it by moving from

the actual platform to a simulated platform. Once again, offloading efficiencies do not

come without a price tag. Although significant advances have been made in modeling and

simulation, there are some areas of tactical aviation that simulators still have trouble

accurately replicating. Differences between simulator and aircraft may result in different

rates of proficiency gain, requiring more repetition or longer hours in the simulator to

compensate for lost flying time.

The TOC optimization initiative considers both of these techniques as

critical components for optimizing training.

 9

d. General Aviator Learning Equation (GALE) Methodology

NAWCTSD HP/ISD conducted a TOC workshop in April 2012 with the

different TRACOMs and FRSs to gather data to support their methodology concept.

Instructors and Subject Matter Experts (SMEs) were asked to provide high 90, low 10

and most likely values of proficiency provided by each block of flights. A high 90 value

indicates the best proficiency gain value seen at most once out of ten times while the low

10 value indicates the worst proficiency gain value seen at most once out of ten times. A

most likely value indicates the proficiency gain that the SME would expect to see in the

average SNA based on the specific block.

Baseline phase entry and exit proficiency values based on the current

syllabus were also obtained from pipeline SMEs during this event. Using the Strike

syllabus as an example, the baseline values of zero proficiency were assigned to Primary

entry proficiency values because SNAs would have no previous flight experience.

However, upon completion, SNAs would be capable of achieving a certain proficiency

level unique to each skill. NAWCTSD HP/ISD analyzed the SME input and provided a

final expected exit proficiency value for each skill.

SMEs were then asked to quantify the proficiency loss that a typical SNA

would suffer if he/she were to fly a downloaded sortie in a different platform. For

example, if a specific air-to-air flight was flown in a T-45C instead of an F/A-18C, what

percentage of proficiency would result? If not flown in the aircraft of choice, would some

degradation in training occur? Twelve SMEs were polled and the resultant values were

provided as a number known as a “media degrader value.” This value represents the

percentage of proficiency one can expect to get if the flight in question is downloaded

from one platform to another. Every building block across the pipeline was assigned

media degrader values for every download scenario. These values are utilized by GALE

methodology to reduce downloaded flights by an appropriate amount to provide the final

reduced proficiency curve.

Additionally, there were “loss factors” provided by SMEs; these loss

factors represented the amount of proficiency lost between phases in training. As an

 10

example, when a SNA leaves Primary flight training and enters Intermediate flight

training, there is a loss of proficiency that occurs in the transition between a turbo prop

aircraft and a jet aircraft. This degradation would set back the SNAs proficiency slightly,

until more proficiency was attained by conducting training events. To keep the desktop

model simple, the degradation was assumed to be constant between phases.

The resultant data sets were utilized by NAWCTSD HP/ISD to create the

GALE proficiency curves. Simple mathematical manipulation provided the ability for

GALE proficiency curves to be generated for every skill, across the pipeline. The general

shape of the curve showing where proficiency is gained across the pipeline phases was

based on skill proficiency entry and exit data. The shape of the curve within each phase is

a result of the individual block contribution to the total phase proficiency gain.

Mathematically, the amount of proficiency gain (
BlockRP) due to each block

is determined as the product of effectiveness and hours as a proportion of the total gain in

the phase:

()()
Block

Phase Total

R
R

Effectiveness Rating Block Hours
P

P
=

where
BlockRP is the individual block proficiency contribution and

Phase TotalRP is the total

skill proficiency gained in the phase.

Additionally, overall phase proficiency, at any point, can be described as

the cumulative sum of blocks’ proficiencies prior to the evaluation point:

BlockR PPhase Proficiency = P + C

where PC is the cumulative skill proficiency on the previous block. Combined, the

equations form the basis of the baseline GALE proficiency curve.

Examples of two manually-created GALE proficiency curves were

provided by NAWCTSD HP/ISD in a methodology briefing chart and are shown in

Figure 5.

 11

 Example of GALE Proficiency Curves Figure 5.

(From Joseph Sheehan, pers. comm.)

Overall proficiency in each skill is plotted as a function of individual block proficiency

contribution. The difference in general shape of the curves is observable—one skill,

represented by the top line in Figure 5 (green line), displays a more linear proficiency

gain across the pipeline, while the other, represented by the bottom line in Figure 5 (red

line), displays a proficiency gain weighted heavily in the latter phases of the pipeline.

This example depicts a couple main points of interest; all skills have a unique learning

curve shape, based on when and where proficiency is gained; and although all pipeline

skills are affected by altering an individual block, the effect on each skill could vary

significantly.

What-if methodology is similar to the baseline methodology, except that it

relies on hypothetical syllabus alterations to adjust the learning curve. The difference

between the two curves represents the effect on skill proficiencies that specific syllabus

manipulation causes. The variance in proficiency can be balanced with the variance in

cost to then help determine if the hypothetical syllabus alteration provides the best value

for the NAE.

 12

C. STRIKE PIPELINE BREAKDOWN

It is imperative to understand the different phases of flight training that aircrew—

Naval Aviators in the Strike pipeline in this case—complete in order to gain the

appropriate KSAs necessary to become Fleet ready.

SNAs initially partake in Aviation Preflight Indoctrination, or API, in Pensacola

FL. In API they are exposed to physical and academic challenges in areas including:

engineering, aerodynamics, air navigation, air physiology, and water survival (Chief of

Naval Air Training 2012).

Upon completion of API they enter their first flying phase, known as Primary

flight training. Primary SNA training is conducted at three military installations:

• NAS Whiting Field, in Milton FL

• NAS Corpus Christi, in Corpus Christi TX

• Vance Air Force Base (AFB), in Enid OK.
Training lasts for approximately 22 weeks and includes the following in either the T-34

Turbomentor or the T-6A Texan II aircraft:

• Ground-based academics

• Simulators

• Flight Training
In Primary, the focus is on basic airmanship and aircraft control. Training consists

of six stages: Familiarization (FAM), Basic Instruments (BI), Precision Aerobatics (PA),

Formation (FORM), night FAM, and Radio Instruments (RI). Upon completion of

primary, pipeline selection occurs. The selection point and available pipelines for SNAs

are shown in Figure 5 on page 4.

In the Strike pipeline, SNAs proceed to the second phase of flight training

commonly known as Intermediate. In the Intermediate phase, SNAs are trained in their

first jet aircraft, the T-45C Goshawk, at one of two bases: NAS Kingsville in Texas, or

NAS Meridian in Mississippi. SNAs learn the fundamentals of flying a faster, more agile

aircraft and improve their proficiency levels in skills required by the Fleet.

 13

Once competent in the new aircraft, they learn the fundamentals of turning an

aircraft into a weapon system in the next phase known as Advanced. SNAs learn strike

tactics, weapons delivery, air combat maneuvering, and receive their carrier qualification

(Chief of Naval Air Training 2012). Upon completion of the Advanced syllabus, SNAs

become designated Naval Aviators. At this point, Fleet platform selection occurs and the

newly designated Naval Aviators proceed to their respective Fleet Replacement

Squadrons.

At the FRS, Naval Aviators fly their assigned Fleet aircraft for the first time

where they continue to add to the skill proficiencies built to date. In the FRS, they learn

the intricacies of their Fleet aircraft, and receive an elementary education in operational

ordinance delivery. Additionally, they are exposed to operational tactics and procedures

in an effort to provide them with enough skill proficiency to be a contributing member in

the operational Fleet.

A general understanding of the ongoing optimization efforts within Naval

Aviation combined with a more detailed understanding of the training pipeline’s

intricacies helped when trying to conceptualize the model that was required to support the

analysis effort. The next chapter focuses on the model concept stage to lay the

appropriate groundwork for design and development efforts.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

II. CONCEPT STAGE

A. ESTABLISHING CAPABILITY AND FUNCTIONALITY

1. System Capabilities

The process began with understanding what capabilities and functions must be

provided by the model being designed. In this case, the model had to provide two user-

defined capabilities provided by NAWCTSD HP/ISP:

• Determine the overall effect hour reductions or alterations may have on
the overall proficiency of graduating aircrew

• Identify training combinations that satisfy the utilization of different
platforms to achieve the desired cost and proficiency levels.

Next, the model’s functions had to be identified and documented to ensure the

capabilities could be delivered. To gain a deeper understanding of what was being

modeled, a functional analysis on the Strike training pipeline was conducted prior to

attempting the analysis on the model. This effort is documented in Appendix A.

2. NAPA Model Functional Analysis

Focusing on the model, the primary functional requirements needed to provide the

desired capabilities are two-fold: the system must first be able to create a pipeline specific

model representative of the desired training pipeline, and it must provide the ability to

analyze that model given different user-defined scenarios. These were placed in context

using an IDEF0 diagram (Figure 6).

 16

Syllabus

Spreadsheet

Fleet
Proficiency

Requirement

Create
Pipeline
Model

Provide
Analysis

SME
Data

NAPA
Model

User
Defined

Scenarios

Fleet
Proficiency

Requirements

Skill
Proficiency

Cost

Analytical
Methodology

User
Defined
Inputs

 NAPA Model IDEF0 Figure 6.

The model must be created by first accepting user-defined input data. The

function of creating a pipeline specific model must be controlled by the training syllabus

and the current Fleet proficiency requirement (both user identified). The function would

utilize a spreadsheet or data manipulation program as well as available SME data as

mechanisms to provide a computer-based model of a specific Naval Training pipeline.

In order to provide analysis, specific user-defined scenarios must be combined

with the computer-based model, controlled once again, by Fleet proficiency

requirements. The analytical methodology selected must provide the mechanism to

facilitate scenario analysis, ultimately producing resultant cost and skill proficiencies.

Completing this portion of the analysis developed a deeper understanding of

functional relationships, data requirements, and basic manufacturing framework of the

model. However, not all functions of the model were represented yet. In order to produce

a complete functional decomposition of the required system, consideration had to be

given to how the model would interact with its intended environment. The additional

analysis resulted in Figure 7, the final functional decomposition of the NAPA model.

 17

 NAPA Model Functional Decomposition Figure 7.

There were five primary functions identified. Specifically, the model must:

• Provide user guidance. Inherent user guidance is critical to increase the
overall usability of the model. Specifically, guidance can be informative or
instructional.

• Maintain Extensibility. The model has to account for differences within
each training pipeline. It must accept user configurations and parameters
to account for those differences.

• Manipulate Data. The model must be able to accept, process, and store
user-defined data sets in a format common to all pipelines.

• Provide Analysis. Obviously, the model must be able to provide the
desired analysis. Specifically, it must be able to compare scenarios or
specific alterations in training, as well as support optimization analysis of
the training pipelines.

• Be Supportable. A supportable model can provide a longer service life.
The maintainability of the model is also crucial to long-term supportability
of the model.

B. REQUIREMENTS DEFINITION AND ANALYSIS

As the primary stakeholder and project sponsor, NAWCTSD HP/ISD provided a

list of needs that the model should satisfy. The original needs statement is provided in

Appendix B.

Model Naval
Aviation Training

Manipulate
Data

 Provide
Analysis

 Maintain
 Extensibility

Be
Supportable

 Provide
User Guidance

Inform
User

Instruct
User

Accept User
Configuration

Accept User
Parameters

Accept
Data Input

Process
Data

Store
Data

Compare
Scenarios

Support
Optimization

Be
Maintainable

 18

Since the TOC initiative was already in progress, transforming user needs into

requirements did not require much iteration. A series of telephone calls and email

exchanges with NAWCTSD HP/ISD personnel confirmed the top-level requirements the

model must fulfill, as well as the system behaviors the model must display. Specifically,

the model shall:

• Accept user-defined data sets

• Accurately represent user-selected pipeline

• Support variations of Basic Query: Provided defined linkages, how single
or multiple training efficiencies alter expected levels of proficiency

• Be searchable and sortable

• Inform user of breached thresholds

• Allow user-defined parameters to dictate model baseline structure

• Incorporate live, real-time updating for scenario analysis

• Provide proficiency and cost outputs for analysis
Additionally, some top-level derived requirements were identified to provide the

functionality identified in the functional decomposition. In particular, the model was

required to:

• Be executable on any Navy Marine Corps Intranet (NMCI) computer

• Be operable by an individual with a baseline of knowledge in Naval
Aviation training

• Be usable by an individual with a basic familiarity (input, output, copy,
paste, and basic navigation / manipulation) with spreadsheet programs
(e.g. Microsoft Excel or iWork Numbers)

• Be extensible (usable by all training pipelines)

• Be maintainable by an individual with above average computing skills
(some programming experience in the programming language selected)

1. Software Constraints

Since any NMCI computer may be required to operate the model, programming

software would be limited to the NMCI software library. This, combined with the

requirement for the model to be spreadsheet-based, resulted in a constraint to use

Microsoft Excel and its resident Visual Basic for Applications (VBA) programming

capability for model creation. Additionally, since many aftermarket optimization

 19

applications require annual financial support, any optimization routines would have to be

accomplished with the built-in optimization modeling system or Solver unless funding

allowed otherwise.

2. Methodology Limitations

The model had to utilize NAWCTSD HP/ISP’s GALE methodology to analyze

training pipelines. This would allow the model to seamlessly integrate with the ongoing

effort, providing immediate benefit to the primary stakeholder.

3. Data limitations

Although a significant amount of data was provided in support of this effort,

offloading data was not available. NAWCTSD HP/ISD is still in the process of gathering

data on moving blocks from flight platforms to simulator platforms. Until a complete set

of data is available, downloading is the only initiative capable of being analyzed. As

such, the model would be designed to support downloading analysis immediately, while

maintaining the ability to incorporate offloading analysis in the future.

4. Assumptions

Along with constraints and limitations, assumptions made throughout the effort

had to be captured for future reference. Table 2 lists the assumptions made to complete

the modeling effort.

 20

Table 2. Assumptions For Model Creation

Tying all requirements, limitations, assumptions, and constraints together helped

develop a final list of requirements. A list of these requirements mapped to the identified

functions is provided in Table 3.

 21

Table 3. Function / Requirement Mapping

After identifying and understanding the system’s requirements, a process model

was selected to guide the remainder of the effort. The next section describes the model

selection and modification process.

 22

C. SELECTING A GUIDING PROCESS MODEL

The Systems Engineering (SE) process should be a frame of reference, tailored to

the specific program in need (Blanchard and Fabrycky 2011). Figure 8 shows the tailored

SE process implemented for the NAPA model design and prototype development.

 Tailored Waterfall Process For NAPA Modeling Figure 8.

A tailored waterfall process model was chosen as the reference mindset for overall model

design—every attempt would be made to complete each phase prior to starting the next

one. Ideally, each phase in the process is carried out to completion in sequence until the

product is delivered (Blanchard and Fabrycky 2011). This type of model was selected

because the user needs were stable, allowing the requirements analysis to be completed

up front. Additionally, a stable schedule for completion allowed concrete planning of

each phase. Iterations were anticipated early in the design phase. Model design would be

complete prior to the coding effort. Developmental testing had to be accomplished while

prototyping the model in the design phase, but once prototyping and coding were

complete, it would be provided to NAWCTSD HP/ISD for final testing and acceptance.

With a guiding process in place, the final process in the conceptual stage was to

establish a concept of operations.

Coding

Model Design

Requirements
Analysis

Testing

Acceptance

Feedback
Loops

 23

D. OPERATIONAL CONCEPT

Two use cases were identified to help substantiate the operational concept; create

a new pipeline training analysis model; and update an existing pipeline training analysis

model.

1. Use-Case 1: Analyzing a Specific Training Scenario

In the first use-case, the user would be starting with an unpopulated model and

would have to accomplish all steps of model creation to begin the process. After the

model was created, a specific scenario would be input into the model and the resultant

outputs (proficiency and cost) would be displayed. In order to create a new model, and

conduct the analysis, the following actions must take place:

• The user defines the desired training pipeline by providing characteristics
unique to it

• The user also provides the specific pipeline data to support GALE
methodology and analysis in a common format

• The current syllabus is input to serve as a baseline from which to compare
other training scenarios

• Training phase models are generated and GALE methodology is applied to
provide the user with a baseline proficiency and cost output

• Once the model is created, the user inputs the training scenario for
analysis

• The difference in proficiency is displayed to the user

• The cost difference is displayed to the user

• The user saves the scenario for future reference

• The user resets the model and repeats the scenario analysis until all
scenarios are analyzed

2. Use-Case 2: Searching for a Training Scenario That Provides Desired
Proficiency Levels

In this scenario, the user must search for the cost associated with providing the

desired proficiency level. Additionally, the model has been previously created and must

simply be reset before reuse:

• The user saves all unchanged data to reuse in the model

 24

• The user resets the proficiency level thresholds to the desired levels

• The model reduces the likelihood of inadvertent data loss by informing
user of the proposed changes and the consequences of the change

• After consent, the model makes the changes and updates the model and is
ready for analysis

• The alternate training scenario is input into the model

• The model provides proficiency outputs and highlights troubled areas

• The user alters the training scenario until all desired proficiency levels are
met

• The user compares baseline training cost, with alternative cost to train
Proposed data inputs and desired outputs for the operational concept, provided by

NAWCTSD HP/ISD have been included in Appendix B. Understanding how the model

would be utilized helped solidify all of the concept stage efforts and laid the groundwork

necessary to transition into solution space, beginning with the design stage.

 25

III. DESIGN AND DEVELOPMENT STAGE

A. MODEL DESIGN

1. Industry Best Practices for Application Design/Development

John Walkenbach, the author of Excel 2010: Power Programming with VBA,

(2010) defines a spreadsheet application as “a file that is designed so that someone other

than the developer can perform useful work without extensive training (101).” Although

simple, this definition focused the design and development effort and provided a constant

reminder not to over complicate the model.

In his book, Walkenbach also identifies characteristics of good spreadsheet

applications. To paraphrase his list, a good application should:

• Help the end user perform a task that they may not be able to do otherwise

• Provide an appropriate solution to the problem

• Accomplish what it is supposed to

• Produce accurate results and be free of bugs

• Use appropriate and efficient methods and algorithms to accomplish its
job

• Trap errors before the user is forced to deal with them

• Not allow the user to delete or modify important components accidentally
(or intentionally)

• Provide a clear and consistent user interface so the user always knows how
to proceed

• Properly document formulas, macros, and user interface elements to allow
for subsequent changes if necessary

• Be designed so that it can be modified in simple ways without making
major changes

• Provide an easily accessible “help” system that provides useful
information on at least the major procedures

• Be portable and able to run on any system that has the proper software
Although not required, the NAPA model’s design process utilized these

characteristics as heuristics for application development.

 26

2. Design Concept

The general concept during the design process was to ensure that the flow of

information between the user and the model occurred in the correct order. A three-phase

approach to creating the model was implemented. Phase one started with ensuring the

correct pipeline configuration. Once the user was satisfied with the configuration, phase

two leveraged user-defined inputs in phase one to create a pipeline specific parameters;

parameters are defined as data that is configuration-based. After the model is framed,

baseline pipeline training events are filled-in during phase three. These three phases

combine to provide the canvas on which to apply the GALE methodology. Once GALE

methodology is fused with pipeline specific data and training events, the actual analysis

can be conducted.

3. Design Framework

Understanding the design concept facilitated the creation of a framework that

identified the actual contents, required inputs, and desired outputs of the model. The

framework helped establish data requirements for the model and create basic page

layouts. Figure 9 graphically represents the flow of data as it enters from external nodes

(yellow) and flows through the model design (gray nodes). Arrows represent information

flow direction and identify what information is required ultimately to produce a

representative pipeline model.

 27

 Basic Model Design Framework Figure 9.

. :
Platfonu Cost

Dropdown Menu
(Ext)

$/Fit Hr
S!Sim Hr

. :

. :

SME DATA (Ext)
#Phases

Phase Names
Pipeline Skills

Desired Proficiency Levels
Phase Functions
Phase Platform

Final Phase Throughput

Data

Con fig
Page

. : SME DATA (Ext)

(Phase Entry/Exit Proficiency Firewallsj l Media Degrader Values

I
Data

Skills
Phases

. : SME DATA (Ext)
Block Data

Syllabus Information
Fit / Sim Tag

Function I Block Map
Baseline Hours

Skill Mean Effectiveness Ratings

Data

Master
Database

Fina l Phase
Throughput

Base line Profic ienc ies Phases Tagged Blocks
Phase Platforms Base line I lours /

Desired Scenario
(Ext)

Downloaded Hours
Additional Hours

Scenario

Download
Page

Baseline Proticicncy
What If Proficiency

t

(Graphical Charts)

Baseline C-:.o::s:.:.t - ---L-* - ---..,.l.

' Phase Cost(s) -Jc:::

Phase
Models

~

Skill Proficiencics '----------___,

 28

The configuration (“Config”) page must provide the initial user-model interaction

during phase one. Users must enter the data required to construct a pipeline model. Basic

information, including the number of phases; the phase names; pipeline skills and desired

proficiency levels; phase platforms; and student throughput formulate the basis of the

pipeline model.

In concept, a programmed macro transforms user-defined configurations into a

“Parameters” page, where more data-gathering for the model would occur. The macro

requires the input of the number of phases in training, what the phases were called, and

the skills and functions associated with each phase to successfully create the page.

With the Parameters page created and filled-in, another page is created by macro.

The master database or “MasterDB” page utilizes both Config and Parameter page inputs

to create a basic table, capable of accepting pipeline specific data from the user. All phase

models are then based on the MasterDB design.

Conceptually, the phase models serve as the location where most calculations

occur. Each phase model, in turn, must provide baseline proficiency and cost values, as

well as what-if proficiency and cost values to facilitate a comparison between the two. To

support a single page input-output design, all phase models feed the “Download” page,

where user-defined alterations in training can be immediately analyzed in terms of cost

and skill proficiency.

4. Coding

Designing the code to be modular is commonly a good practice—it makes it

scalable, extendable, and supportable. However, given the programming language, and

the model framework established, an imperative programming style seemed appropriate

to govern the code design. With imperative programming, individual subroutines alter the

state of the model, requiring them to be run in a specific order for the model to be created

properly. This supports the page / macro concept designed in the framework.

 29

However, designing modularity into the code was not abandoned. If aspects of

modularity could be integrated into the design in it would improve the maintainability,

scalability, and extendibility of the model. To accomplish this:

• Functions that would be used multiple times need to be established as
external functions accessible by all subroutines

• Variables and constants must be defined up-front, and referenced
throughout the coding process to reduce efforts required to update or alter
the model

• Individual subroutines must be defined by logical boundaries in model
functionality

• The required inputs and outputs of each subroutine need to be captured to
ensure future maintenance efforts can alter a subroutine without breaking
the models overall functionality

Together, the design concept, model framework, and code design provided a

roadmap for model development.

B. MODEL DEVELOPMENT

Two prototypes were constructed to verify model design concepts and application

of methodology prior to final model development. The first prototype was a proof of

concept—it focused on developing the proper spreadsheet functionality to support the

required analysis. It was not designed to provide all of the required functions. The model

was kept at a manageable size (10 blocks per phase instead of the typical 30–50 blocks).

Controlled values were used in place of real data to facilitate rapid troubleshooting.

Spreadsheet design and functionality were hard-coded to increase the speed of

prototyping. Original outputs and screenshots of the first prototype are included in

Appendix C. After the basic structure and logic of the design was verified, the focus

turned to verification of model outputs.

The second prototype utilized the basic structure and logic of the design and

applied it to actual data sets provided for the Strike syllabus. Outputs were generated and

verified with NAWCTSD HP/ISD personnel. Two main insights were found as a result of

this effort:

• The outputs of the model were consistent with NAWCTSD HP/ISD
manual calculations.

 30

• An after-market solver platform would be required to support training
optimization efforts.

The second insight caused a re-evaluation of requirements, ultimately leading to

stakeholders agreeing that pursuing the optimization capability during this effort was

cost-prohibitive. As such, the requirement to provide training optimization was removed.

The design concept, framework, and verified developmental efforts were combined to

create the final NAPA model. The model was automated to guide a user through the input

pages, create the training phase models based on those inputs, and support analysis

efforts after creation. VBA was used to automate Excel functionality. Inexperience with

the VBA programming environment resulted in fragile code. To help address this,

William Evans, an Operations Research student at NPS with a Computer Science

undergraduate degree, provided assistance to strengthen the code design. Code

strengthening efforts included:

• Generalizing the code by removing “magic” number references (constant
values that are hard-coded into the application without explanation)

• Making use of global variables to improve the readability of the code and
ease the maintainability of the model

• Increasing the speed of the subroutines by utilizing more efficient coding
procedures and practices

• Increasing model extensibility by allowing more user-defined parameters

• Providing in-application trouble shooting capability for the future
maintainability of the code

Once code strengthening efforts were complete, the model was ready for final

verification. A complete description of the NAPA model is provided in Appendix D.

Complete VBA code can be found in Appendix E.

C. VERIFICATION AND VALIDATION

1. Verifying Requirements Were Met

Requirements and functions were mapped to final design elements of the NAPA

model to ensure that no orphan requirements remained. The complete mapping of

requirement to model element is provided in Appendix F.

 31

To summarize, every requirement was satisfied, save one—optimization of

training could not be provided due to software limitations. Since optimization of training

was a user requirement, the architecture of the final model was designed to preserve the

capability to integrate it in the future.

2. Verifying Model Performance

Previous coordination with the primary stakeholders during prototyping provided
verification for the logic, design, and outputs of the model. The focus of this effort was
verifying functionality added to address the overall extensibility of the model. Due to the
size of the model, exhaustive checks were not feasible. Spot-checking different aspects of
automation were conducted to ensure the model was performing as intended. These spot-
checks, combined with properly verified outputs provided the confidence necessary to
proceed with validation efforts.

3. Stakeholder Model Validation

NAWCTSD HP/ISD conducted the model validation efforts. They supported an

active request by CNATRA to analyze a potential reduction in Primary phase flight hours

in the Rotary training syllabus. Knowing that a reduction of flight hours would result in

some proficiency degradation, CNATRA wanted to identify the difference in final

proficiency if they chose different areas in the syllabus to take the hours from. Two

scenarios were proposed:

• A reduction of 8.5 hours in PA flights in the Primary phase

• A reduction of 8.5 hours late in the RI flights in the Primary phase
NAWCTSD HP/ISD populated the NAPA model with the Rotary training

syllabus data and utilized it to analyze both scenarios. The NAPA model’s outputs

allowed NAWCTSD HP/ISD to quickly identify that both scenarios significantly

impacted the final proficiencies of four out of the eight skills in the Rotary training

pipeline. This enabled NAWCTSD HP/ISD to inform CNATRA decision-makers about

the potential impacts of their alternatives. NAWCTSD HP/ISD confirmed the outputs of

the model in a final verification effort with their manual calculation methodology to

ensure the outputs were accurate.

 32

Once validated, the NAPA model was ready for delivery. NAWCTSD HP/ISD

accepted ownership of the NAPA model in March of 2013, and currently utilizes it for

desktop analysis efforts.

 33

IV. CONCLUSIONS

The application of the SE process provided significant insight throughout the

development of the NAPA model; it helped lay a solid foundation for the effort by

concentrating on user needs and requirements; it provided the tools necessary to identify

the model’s architecture that would support those requirements; and it helped design and

develop a working model that satisfied those requirements.

Success of the effort can ultimately be determined by the ability of the model to

provide the capabilities desired by the user. Specifically, the model had to:

• Determine the overall effect training hour reductions or alterations may
have on the overall proficiency of graduating aircrew

• Identify training combinations that satisfy utilization of different platforms
to achieve the desired cost and proficiency levels.

The model easily identifies proficiency alterations as a result of training hour reductions

within the syllabus. Additionally, it allows users to analyze different phase / platform /

training hour combinations to achieve desired levels of cost and proficiency. Based on

providing user capabilities, the effort was a success.

Another way to determine the “success” of the effort is to ask, “what might have

been overlooked had a systems approach not been applied?” Three potential oversights

were identified:

• The model may have been designed to support the Strike pipeline only,
and not all other training pipelines

• The model may have been developed with a software suite not supportable
logistically

• The model may have been developed with architecture that did not support
expansion of analysis capabilities

The first potential oversight sounds almost trivial, but the effort taken to

functionally decompose the system placed extensibility at the requirement forefront.

Subsequently, the design for extensibility received the attention it needed throughout the

process. Artifacts of this requirement are apparent in the architecture, design, and

prototyping efforts taken to develop a properly extensible model. Early emphasis on this

 34

requirement resulted in a model that can be used by any training pipeline, without any

modification. This capability was demonstrated during validation efforts where

NAWCTSD HP/ISD analyzed a different pipeline (Rotary training) with the NAPA model.

The second potential oversight was also addressed in the requirements analysis

process. Initially, after-market solving platforms were being discussed as potential

suitable software suites. However, upon realizing that the model required NMCI

compatibility and that user population may be diverse, the software constraint drove

follow-on design and development efforts resulting in the use of an off-the-shelf product:

Microsoft Excel. Once again, had this not been identified early in the process, significant

re-work may have been necessary.

Finally, the third potential oversight was addressed by recognizing the desire for

future analysis capabilities and incorporating them into the architecture and design of the

model. Realizing that after-market solvers may be utilized someday, the framework of the

model was designed to accommodate typical optimization software requirements. With little

programming re-work, the model can be run on after-market Excel-based solvers such as

FrontlineSolver’s Risk Solver Pro or Real Options Valuation, Incorporated’s Risk Simulator.

Additionally, the lack of data to support the offloading effort made supporting that portion of

the analysis impossible. However, re-programming the final model to support that effort can

be accomplished by simply following the framework already in place.

Viewing this modeling effort through the eyes of a systems thinker increased the

model’s performance on many different levels. But not everything can be considered

successful. Part of an honest analysis of an effort includes determining what could have

been done better. In retrospect, providing a detailed requirements traceability

verification matrix (RVTM) would have made the verification and validation of the

model much easier. This effort mapped elements of the model to requirements to ensure

no orphans existed, but it did not provide a threshold and objective against which to

verify. In this case, verification was accomplished by comparison of manual GALE

calculations with the NAPA model outputs and the primary stakeholder’s feedback

served to validate the model.

 35

Ultimately, the SE process worked. It helped provide a desktop model, capable of

facilitating the analysis of Naval Aviation training to NAWCTSD HP/ISD. Provided in

the context of the Strike training pipeline, this model met the stakeholder need and will

hopefully continue to provide analytical service for years to come.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

V. AREAS FOR FURTHER RESEARCH

After developing the current model, recommendations can be made in an effort to

improve the overall quality of information provided.

A. SUPPORT OF OFFLOADING

Supporting the other efficiency recognized during this analysis is crucial to seeing

the “entire” training picture. The inability to incorporate offloading into the model can be

eliminated as soon as data becomes available to support the effort. Completion of this

additional effort will significantly improve the quality of information provided to

decision-makers.

B. TRAINING OPTIMIZATION

The model does not support the optimization of training, but rather it provides a

tool to determine whether or not a specific scenario satisfies the cost and proficiency

requirements set by the user. In short, there could be more efficient ways to achieve the

same output, but significant effort has to be exerted to achieve it through this tool.

Having a tool that can look for optimal solutions is something that can be investigated in

the future. Should money become available to support after-market solvers, efforts can be

focused on adapting the NAPA model to accomplish this task.

C. ALTERNATIVE METHODOLOGIES FOR ANALYSIS

Capability frontiers may be looked at to determine what is possible given different

input parameters. Finding feasible solutions that satisfice, or provide an acceptable

solution, rather than optimize the training pipeline may allow decision-makers to make

cost-comparisons and select a unique path toward fulfilling the Fleet proficiency

requirements.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

APPENDIX A: FUNCTIONAL ANALYSIS OF NAVAL AVIATION
TRAINING (STRIKE PIPELINE)

From a system perspective, Naval Aviation training can be described in terms of

inputs, outputs, controls, and mechanisms. At the highest level, the function of training

Naval Aviators converts students (inputs) into Naval Aviators and NFOs (outputs), by

instructors through the use of training aircraft, simulators, and facilities (mechanisms),

via the training syllabi to meet proficiency requirements set by the Fleet (controls).

These attributes were captured in the IDEF0 model of Naval Aviation training shown in

Figure 10.

 Top Level IDEF0 Model of Naval Aviation Training Figure 10.

The next step was to analyze the Strike training pipeline specifically. Figure 11

provides a more detailed IDEF0 model of a specific (Strike) training pipeline.

NAT.0

Conduct Naval
Aviation
Training

Students
Naval

Aviators

Syllabus

Training
Facilities
Aircraft
& Sims

Instructors

Fleet
Proficiency

Requirement

Naval Flight
Officers

Controls

Inputs Outputs

Mechanisms

 40

 IDEF0 Detailed Model of the Strike Pipeline for Naval Aviators Figure 11.

The function of conducting Primary training transforms Naval officers selected as

SNAs (inputs), into SNAs with basic flight skill proficiencies and knowledge of which

training pipeline they will follow (outputs) controlled by the Primary syllabus, using

instructors and the Primary platform, simulators, and Primary facilities as mechanisms.

Intermediate flight training converts SNAs with basic flight skill proficiencies

into one with proficiency increases in skills desired by their selected pipeline. Controls

during the Intermediate function include the specific pipeline selected and the

intermediate syllabus associated with that pipeline. Mechanisms for intermediate include

the instructors and the pipeline specific platform, associated simulators, and facilities that

instruction will take place in. A mechanism unique to the Intermediate and Advanced

training functions is the SERGRAD. A SERGRAD is a selectively retained graduate who

displays enough skill proficiency through training to immediately be asked to join the

instructor cadre before proceeding onto the FRS. A SERGRAD can be a mechanism for

either Intermediate or Advanced functions.

NAT3

Conduct
Advanced
Training

NAT2

Conduct
Intermediate

Training

NAT1

Conduct
Primary
Training

NAT4

Conduct
FRS

Training

Student
Naval

Aviator
(SNA)

Moderately
Skilled SNA

Basic
Skilled
SNA

Designated
Naval Aviator

Fleet
Aviator

Instructors

Pipeline
Selection

Syllabi

Fleet Platform
Selection

SERGRAD

INT
Platform

Sim
Facility

PRI
Platform

Sim
Facility

ADV
Platform

Sim
Facility

FRS
Platform

Sim
Facility

 41

The Advanced training function finally transforms a SNA (input) into a

designated Naval Aviator with a specific Fleet platform to operate (outputs). Similar

controls and mechanisms help facilitate this function.

The FRS function transforms a newly designated Naval Aviator into a Fleet

Aviator using mechanisms similar to previous functions. The FRS training function is

controlled by the selected Fleet platform and FRS syllabus associated with it.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

APPENDIX B: ORIGINAL USER NEEDS STATEMENT AND
INITIAL CONCEPT OF OPERATIONS

A. USER NEEDS

On July 23, 2012, in email communication, NAWCTSD HP/ISDs lead scientist,

Dr. Joseph Sheehan provided a PowerPoint slide that captured initial stakeholder needs

for the effort (Figure 12).

 Original Stakeholder Needs Documentation (From Joseph Sheehan, pers. Figure 12.

comm.)

To expand on the slide:
• Variations of Basic Query: The users wanted the model to be capable of

analyzing individual downloading / offloading efforts as well as the
cumulative effect of multiple downloading / offloading efforts.

• Search Block Metadata and Return Screened Results: Having the data in a
sortable list will allow the users to see which blocks have the highest rate

 44

of return. Additionally, they can see where the most hours are currently
allocated.

• Sort Query Results: Users want to be able to rank the results

• Notify of Breached Thresholds: Users want to be alerted if proficiency
values drop below defined thresholds, or when syllabus alterations result
in reduced proficiency.

B. OPERATIONAL CONCEPT: DATA FLOW

Use-case scenarios captured the high-level concepts of NAWCTSD HP/ISDs

vision of how the NAPA model would be utilized. Additional detail of the operational

concept, in terms of what inputs are required, as well as what specific outputs are desired

are provided in this section. Figure 13 shows the desired inputs and outputs of the model.

 User Concept of Operations (After Joseph Sheehan, 2012 pers. comm.) Figure 13.

Inputs include the training syllabus, broken down in to training blocks that

support a Training Task List (TTL). The blocks are mapped through learning objectives

 45

and skills and provided to the model as a vetted product. The blocks are also assigned a

training effectiveness rating for each skill by SMEs. Media degrader values are also

provided as a way to reduce the effectiveness rating of a block if its moved from the

original platform to one of lower capability.

Outputs include a baseline proficiency curve for each skill, projected proficiency

curves for the altered syllabus, and notification of any undesirable results based on user-

defined parameters.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

APPENDIX C: MODEL PROTOTYPES

A. THE FIRST PROTOTYPE

The first prototype was built entirely in Excel, to provide proof-of-concept

functionality and GALE methodology support. Specifically, the design included only

three out of the eight skills for the Strike training syllabus; flight admin, aircraft handling,

and air-to-air. The prototype utilized only ten blocks per phase, and included an attempt

at optimization functionality. A partial screenshot example of the first prototype layout

can be seen in Figure 14.

 48

 Example of First Prototype Layout Figure 14.

 49

The minimum, maximum, and optimal hours blocks were included in the first

prototype to facilitate the optimization functionality of the model. Minimum hours would

be based on a SME provided mandate to conduct a certain block of training—if the block

were mandatory, a minimum of one hour would be required; however, if it were a

downloaded flight, zero would be a possibility. Max hours were hard-coded to twice the

baseline hours to cap the amount of proficiency one can achieve in a particular phase

block—realistic scenarios would not allow a student to remain in a specific block for an

unlimited amount of time.

The first prototype provided graphical output of the baseline and reduced hour

proficiency for pilots. An example of the graphical output of the first prototype is shown

in Figure 15.

 First Prototype Output Example Figure 15.

The goal of the first prototype was not to provide actual analysis, but rather to verify that

the modeling methodology. The first prototype was provided to NAWCTSD HP/ISD for

 50

final analysis and approval. Upon acceptance of the model methodology, the second

prototype effort began.

B. THE SECOND PROTOTYPE

The second prototype followed the design architecture created during the SE

process. As a general concept, the second prototype served as a static example of the final

product. A static configuration or “Config” page was created and populated with Strike

data. The Config page can be seen in Figure 16.

 51

 Config Page For Second Prototype Figure 16.

 52

The function lists for each phase as well as the pipeline skill list were hard coded

into the model to minimize prototype automation.

Figure 17 shows a partial view of the static Parameters page. This page allows the

user to input SME data; firewall proficiency values, and media degrader values.

 53

 Parameters Page for Second Prototype (Partial Example) Figure 17.

 54

Of the four training phases only three—FRS, Advanced, and Intermediate—are

represented on the right of the page. Primary training was initially left out because

downloading from Primary was not possible. In the final model, the Primary Phase was

added back to allow future uploading analysis, should the need arise.

The Master DB page leveraged Excel Table functionality and was where all

training pipeline blocks were entered. Once data is input in the correct format, it can be

identified by various tags and sorted to help with analysis later. Figure 18 shows a partial

picture of the Master DB in table format.

 55

 Second Prototype MasterDB (Partial Example) Figure 18.

 56

The Download page is where most of the user-defined scenario input takes place.

This is where training hours can be moved or downloaded between platforms. The

Download page is combined with the four static phase models to provide the final

training pipeline model. Figure 19 shows a partial view of the Download page.

 Second Prototype Download Page (Partial Example) Figure 19.

Static phase models were also created to make sure the layout supported

automation. An example of a phase model is captured in Figure 20.

 57

 Second Prototype Phase Model (Partial Example) Figure 20.

 58

These models were created as Excel tables to take advantage of the inherent

functionality of the table format. This translated directly into the final model as

discoveries were made during this process that simplified the coding process

significantly. Specifically, table functionality allows entire columns to be filled based on

the contents of the first cell. As a result, final coding only had to input formulas into the

top cell and it would automatically fill the rest.

Graphical outputs of the second prototype were not optimal. At this point, the

design of the final graphical output was still in question. Developing an output that

provided the information clearly and concisely to the user required multiple attempts.

Figure 21 shows the output of the second prototype.

 59

 Skill Proficiency Output of Second Prototype Figure 21.

 60

The horizontal lines provided Phase entry and exit levels. The general shape of

the learning curve showed proficiency gain. This output proved to be undesirable.

Although the information was displayed, it was difficult to interpret and understand.

Looking at what was truly important to see—the entry and exit points of the phases as

well as the final proficiency in each skill—a new display for model outputs was designed

into the final model.

 61

APPENDIX D: FULL DESCRIPTION OF NAVAL AVIATION
PROFICIENCY ANALYSIS MODEL

An in-depth look into the final design of the Naval Aviation Proficiency Analysis

(NAPA) model provides the insight necessary to ensure the system behaviors and

requirements are met. The interfaces between the pages were facilitated primarily by

VBA code. Appendix C contains the entire applications code for review.

A. FINAL PAGE DESIGNS

When users want to create a new NAPA model, they open the master file and find

three pages; the Directions page, CONFIG page, and the Dropdown Menu Page.

Equipped with training pipeline specifics, users systematically fill out the model and

ultimately create a live worksheet capable of facilitating exploration of downloading

events from one phase to another. In general, user-input cells are highlighted in yellow

throughout most of the model for human interface considerations. Every page in the

model has functionality that, together, provides the user with a simple way to analyze

efficiency excursions. Detailed inspection of the final page designs accomplishes three

things: it helps depict the model’s capabilities; it delineates the physical allocation of

each requirement to a component of the model; and it describes the contribution each

component has to the overall system behaviors required of the model.

1. Pages Available When Creating A New Model

The Directions page is designed as a quick reference for the user to understand

what was required to make the model work. Basic user-interface information is supplied

to help guide a user to creating a working model. This page helps provide a clear guide

for user interface with the model. Additionally, it provides an easily accessible “help”

function for the user. Once the user becomes familiar with the model, little interaction

with this page would occur. An example of the Directions page is provided in Figure 22.

 62

 NAPA Model Directions Page Figure 22.

 Figure 22 only shows a portion of the directions provided on the page.

The Drop Down List page (Figure 23) allows the user to input the cost per hour

of operating different platforms and simulators. Since the Strike pipeline was the test

pipeline for this effort, only Strike platform costs are shown.

 63

 Drop Down List Page Figure 23.

To make the model extensible, this list had to be dynamic, to properly populate the rest of

the model. If a platform was not listed it could be added without further modification to

the model for utilization. Additionally, to keep the model up-to-date, the Drop Down

List must be updated with the most recent operational costs of the platforms and

simulators to maintain model validity.

The CONFIG page (Figures 24 and 25) is where the model becomes

fundamentally extensible. It contains a few crucial components that require user-

definition for the model to properly be created. Specifically:

The total number of phases must be defined. Initially, four phases were hard
coded into the design based on an early assumption to scope the problem.
However, providing a model with the capability to analyze more than four phases
enhances the extensibility of the model and allows it to be utilized for future
analysis efforts where follow-on Fleet phases of the training continuum may be
added. Should greater than four phases of training ever be implemented, the
graphical output of the model would have to be manually altered as the default
graph changes.

Phase names must be defined. This is where the model derives subsequent labels.
Figure 24 shows the four common phase names defined although any user-
defined names could be used and would propagate throughout the model.

Annual throughput for the pipeline must be defined. This is where the model looks
to assist in the cost analysis portion of the model. Improper identification of this

 64

throughput would propagate inaccuracies throughout the cost analysis of the
model.

Pipeline Skills and threshold proficiency levels must be identified. Similar to the
phase names, the user-defined list of skills is where the model looks to properly
configure itself. Figure 16 shows a completed Skill list and proficiency threshold
for the Strike pipeline.

Phase functions must be identified. This is where the model begins to build search
capability for its media degrader values.

Figure 24 depicts what the user would see immediately upon opening the page.

 CONFIG Page Part I: Phases, Platforms, and Throughput Figure 24.

The interaction between the Drop Down List and the CONFIG page is captured in Figure

24, as user defined Platforms show up for selection in the platform column.

 Once completed, the user scrolls to the right to reveal the rest of the page, shown

in Figure 25. This is where the rest of the user-defined input on the CONFIG page is

input.

 65

 CONFIG Page Part II: Skills, Proficiency Thresholds, and Phase Functions Figure 25.

Paste

X Cut

"tli Copy ·

<J Format Painter

Clipboard G.

W34

N 0

Page l ayout

Calibri

Pipe line Skills

Formulas

Skill Min Proficiency

AC Ha ndle 95

Flight Admin 95
I MSN Planning 95

Surv ivability 95

co 95

A/A i 95

A/G 95
Sensor Emp 95

31
1111 111 • •1 Conf
Ready e:J

NAPA Model - Microsoft Excel

Dat a Review View Developer

~· ~WrapText

~~ t;~ m M erge & Center ...

Alignment

R s

General

$... %

Number

T

+ .0 .00 .oo + .0 Condit ional Format Cell
Formatting ... as Table Styles •

Styles

u

Insert Delet e Format

Cells

L AutoSum"'

liJ Fill •

Q_ Clear •

v
Function List

1

2
3
4

5

6
7
8
9

10
11

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27

tJ

Intermediate Adva nced FRS

Division Form

TACF

.......... Lo•v L~y~I I'Jayi~ation LgyJ Leye i i'Jayi~~tign Lgy1 L~yei i'J~Vi~ation F•vd()TR l~tercepts

..................... ~.~-~-~-~~-~-~-~-~-~---~-~-~-~-~-~--·· ~.~-~-~-~~-~-~-~.0.~ ... ~.~-~-~-~~.... Instrument Rating ~.~-~:~: ... ~.~Y~.) ~.~Y.~.~-~-~!.9.0
....... ()p~rationai i'J~yi~ation ()p~r~ti~~~~ I'J~Vi~~ti~~ f Qp~;~~i~~~~ ~~;;ig~ti~; LA TI

Familiarization Familiarizat ion Familiarization

Formation Format ion Formation

Lo1.v-level Format ion Lo1..v-level Formation Low·- le vel Formation ...

Tactical Formation Tactical Formation Tactical Format ion ..

................. ' I'J i~~t Fgr~1~tig~
FCLP

45/30 de e dives

Stra fe

Pops

CAS

PGM

Sensor t o Vis ua l Ha ndoff

SACT

2v1 BFM

OCA

DCA

 66

Once completed, a subroutine called “MakeParametersPage()” is called by depressing the

“Make Parameters” button on the CONFIG page shown in Figure 24.

2. The Parameters Page

The Parameters page relies on CONFIG page inputs to be properly created. The

Skill list is required to create the properly sized baseline proficiency or “firewall” table

shown in Figure 26.

 Parameters Page Part I: Baseline Proficiency Table Figure 26.

The table also relies on the user-defined Phase names for its row labels. This table is

where the baseline phase proficiency values provided by SME input would be captured.

 Once the baseline proficiency value table is filled out, the user has to fill out the

media degrader tables on the page. This is where SME provided platform proficiency

degrader values are tagged with the function they affect. Figure 27 shows an example of

one of the four media degrader tables for the Strike syllabus.

 67

 Parameters Page Part II: Sample (1 of 4) Media Degrader Tables Figure 27.

The media degrader tables are designed to support the potential for future “uploading”

analysis as well. However, due to the fact that there is no data on uploading, the columns

are effectively negated by zeroing out the column—essentially saying that there is NO

value provided for moving a flight to a higher cost platform. When uploading data

becomes available it can be quickly incorporated into the model for analysis.

Upon completion, the MasterDB page is created by calling a subroutine titled

“MakeMasterDBPage()” by pressing the appropriate user-interface button located on the

page.

 68

3. The MasterDB Page

The MasterDB page is where the entire block structure of the pipeline is input.

Additionally, this is where the Mean Effectiveness Ratings or MERs are first input into

the model. An example of a blank MasterDB page is shown in Figure 28.

 69

 Initial MasterDB Page Figure 28.

 70

This is the first time that a deviation from the yellow-highlighted cell for user

input appears. Excel’s inherent table properties satisfy user needs and create system

behaviors required to satisfy the requirements. After consulting with the users, the table

format was accepted.

Data for the Master DB page must contain the following values for the model to

accept it and provide proper results:

• The original Phase in which the block is completed

• The Block ID or alpha-numeric block-identifier that ties directly to the
phase syllabus. (Usually SME provided)

• Title of the Block appears next to the Block ID for plain English
identification

• Phase function that the Block services is indicated

• The platform in which each Block is completed

• A block tag to identify it as a flight block or a simulator block (to help
identify blocks for cost analysis purposes)

• The syllabus baseline hours for each block is noted

• The Mean Effectiveness Rating (MER) value that the block provides for
each skill identified in the pipeline skill list

Filled out, the MasterDB becomes a sortable table that provides the mapping

between block, platform, MER value, function, Media Degrader Value, and Skill. An

example of the first 30 blocks of the Strike pipeline is shown in Figure 29.

 71

 First 30 Blocks of Strike Master Database Figure 29.

 72

Once the MasterDB page is filled, the phase models and Download Page are

created by calling a subroutine entitled “MakeRemainingPages()” assigned to a button on

the MasterDB page shown in Figure 29.

4. Phase Models and Download Page

An individual Model page is created for every user-defined phase. The models

are generically named to maintain the versatility of the model. An example of a phase

model is shown in Figure 30.

 73

 Initial Phase Model Interface Example Figure 30.

 74

Many columns containing background information and data manipulation are

automatically hidden during the subroutine to make the output more user-friendly. Upon

completion, only the block number and columns associated with baseline and what-if

values are displayed. This allows the user to quickly create a graphical depiction of the

data, should one be desired. The ability to quickly graph these outputs also provides a

quick way to re-create the original GALE learning curves.

The Download page is where the majority of user interaction takes place once the

final pages are created. There are three main sections on the Download page:

• Scenario input section. Located on the far left of the Download page, this
section is where users input their what-if scenarios. This section takes
advantage of inherent Excel table properties and allows filtering to focus
on concentration areas. Additionally, conditional formatting in the what-if
columns will highlight when a change or difference from the baseline has
been entered.

• Real-time analysis section. Located on the top of the Download page, this
section provides an instantaneous cost and hour difference within the
phases along with the difference in skill proficiency compared to the
baseline.

• Chart section. This section shows the 3-D charts for baseline and what-if
scenarios.

The initial view of the Download page is shown in Figure 31.

 75

 Initial Download Page Interface Figure 31.

 76

B. MODEL OUTPUTS

1. Training Pipeline Baseline Output (Strike Example)

The NAPA model provides Baseline skill proficiencies in both table and graphical

formats (Figures 32 and 33 respectively).

 NAPA Model Baseline Proficiency Table Figure 32.

Both Baseline and “What If” scenarios initially show 100% proficiency gain,

indicating that no exploratory values have been input into the download page.

 NAPA Model Output of Baseline Skill Proficiencies Figure 33.

The graphical output plots the proficiency levels (vertical axis) of identified

pipeline skills (horizontal axis) across chronological phase entry and exit points

 77

throughout the pipeline (into page). This graphic enforces a couple critical components

of the Strike training pipeline:

• Similar to the manual example of the proficiency curves provided by
NAWCTSD HP/ISD, skill proficiency is gained at different rates
throughout the training pipeline. Subsequently, reductions or alterations in
the syllabus at specific times may have a greater effect on one skill’s
proficiency gain than on another’s.

• The baseline assumption is that the current pipeline provides 100% of the
proficiency required for a pilot to become a productive member of the
Fleet forces.

The overall shape of the surface created by the varied proficiency gains depict

where potential capability gaps exist. If proficiency gain in a skill is only provided in one

phase, any change in that phase potentially creates an unrecoverable proficiency deficit in

that skill.

2. Downloading Example

To provide an example of how the NAPA model reacts to a downloading

scenario, almost ten hours from the FRS phase are selected to download to the Advanced

phase. Specifically, Basic Fighter Maneuvers (BFM) blocks 162–166 are removed from

the FRS phase and added to the Advanced phase. Figure 34 shows the Download page

example.

 78

 Partial View of Download Page Contents During Scenario Analysis Figure 34.

 79

A more detailed look into parts of the NAPA model reveals how it reacts to the

scenario. Figure 35 focuses on the blocks that were altered and shows how the yellow

highlights used by the model to depict an hour-for-hour block download in the scenario

input section.

 Portion of Download Page Depicting Downloaded BFM Blocks from the FRS Figure 35.

to Advanced

The What if chart (Figure 36) in the chart section of the Download page shows

the skill proficiency levels resulting from downloading the BFM blocks.

 80

 Download Page What If Chart: Skill Proficiency Levels Resulting From Figure 36.

Downloaded Blocks

Like the baseline chart, the graphical output plots the proficiency levels (vertical

axis) of identified pipeline skills (horizontal axis) across chronological phase entry and

exit points throughout the pipeline (into page). The variation in output skill proficiencies

resulting from the scenario shows the individual dependency each skill has with syllabus

hours.

In the real-time analysis section, both cost and hour difference resulting from the

download is calculated. In this example, by moving 9.8 hours from the FRS phase to the

Advanced phase, results in a savings of $62,970 per pilot. The total hours in the pipeline

remain the same, but the downloaded hours are shifted from FRS to Advanced phases.

The hour shifts as well as the cost savings can be seen in Figure 37 (part of the Download

page).

 81

 Download Page Cost Table and Hours Table Resulting From Downloaded Figure 37.

Blocks

In Figure 38, proficiency threshold breeches are highlighted to indicate when the

resulting skill proficiency drops below the user-defined threshold. Both air-to-air (A/A)

and Sensor Employment (Sensor Emp) blocks show breeches in this scenario—the

proficiency threshold was set for 95% in this example.

 Download Page Proficiency Table and Annual Cost Difference Resulting Figure 38.

From Downloaded Blocks

Additionally, the annual cost difference is provided to the user based on CONFIG page

throughput values and cost differences associated with the specific scenario.

 The one-for-one download scenario—where the same amount of block hours are

moved into a different phase—will almost always produce some level of proficiency

degradation. In some cases, proficiency in skills may be reduced to unacceptable levels

and may be un-recoverable without adding hours to maintain skill proficiency at

minimum threshold levels.

 82

3. Maintaining Threshold Levels

This example shows how users might utilize the model to investigate a syllabus

solution to maintain their minimum proficiency values. Using the previous download

scenario as a starting point, this scenario will add hours where necessary to maintain the

desired threshold levels. Figure 39 depicts what the user would see on the Download

page during this type of scenario analysis.

 83

 Partial View of Download Page Contents Figure 39.

 84

No highlighted cells in the real-time analysis section indicate that the thresholds for skill

proficiencies are met.

A closer look into the scenario input section (Figure 40) shows that additional

hours have been added to the Advanced syllabus to compensate for the loss in proficiency

in the Air-to-Air skill. 1.5 hours have been re-inserted into the FRS syllabus to increase

the Sensor Employment skill proficiency above threshold levels. Numbers in the model

are red, indicating a change in the number of hours in that block.

 Original Download Scenario (Top) and Altered Scenario to Maintain Figure 40.

Minimum Proficiency Values (Bottom)

The following alterations in hours are made in this example:

• Block 162 hours increased from 1.4 hours to 2 hours in advanced

• Block 163 hours increased from 1.2 hours to 2 hours in advanced

• Block 164–166 hours increased from 2.4 hours to 3 hours in advanced

• Block 166 hours added from 0 to 1.5 hours in FRS

 85

The altered scenario output is also graphically available in the chart section

(Figure 41).

 Download Page What If Chart Output Figure 41.

The real-time analysis section shows the change in hours for the two affected

phases. Figure 42 shows that 13 hours have been added to the advanced phase, but 8.3

hours have been removed from the FRS phase, saving $34,890 per pilot.

 Download Page Cost Table and Hour Table for Threshold Example Figure 42.

 86

A close-up look at the rest of the real-time analysis section (Figure 43) shows that

no proficiency values breeched the desired threshold (no highlights) and an annual cost

savings of $5,408,420 based on a throughput of 155 pilots in the Strike pipeline.

 Download Page Proficiency Table and Annual Cost Difference for Threshold Figure 43.

Example

The completed model is capable of supporting NAWCTSD HP/ISD efforts to

analyze the effect that alterations in flight hours have on the proficiency of aircrew as

well as the cost required to obtain that proficiency.

 87

APPENDIX E: COMPLETE VBA APPLICATION CODE

The VBA code is provided, in its entirety, for historical reference. The code is

commented to help determine the functionality each subroutine provides the NAPA

model.

BEGIN CODE:

Option Explicit

‘ This DEBUGFLAG affects many steps:
‘ (1) in MakeParametersPage, if False then all dependent worksheets are
‘ found/deleted; if True, only “Parameters” is found/deleted.
‘ (2) in many functions, if False then non-user-dependent worksheets are
‘ hidden from view; if True, no worksheets are hidden
‘ (3) in MakeMasterDB and MakeModel, if False then non-user-dependent columns
‘ are hidden; if True, none of the columns are hidden
Public Const DEBUGFLAG As Boolean = False

‘ Starting cells for various pages
Public Const STARTCELL_PARAMETERS As String = “C6”
Public Const STARTCELL_MASTERDB As String = “C6”
Public Const STARTCELL_DLPAGE As String = “A6”
Public Const STARTCELL_MODEL As String = “C6”

Public Const CFG_FUNCLEN As Integer = 40

‘ These refer to the PhaseRef table on the Config page.
Public Const PR_PHASE As Integer = 1
Public Const PR_PLATFORM As Integer = 2
Public Const PR_MAXHRFACTOR As Integer = 3
Public Const PR_COSTFLT As Integer = 4
Public Const PR_COSTSIM As Integer = 5
Public Const PR_BLOCKSPERPHASE As Integer = 6

Public Const PR_BTN_MASTERDB As String = “A2:B3”
Public Const PR_BTN_MASTERDB_HELP As String = “C2”
Public Const MDB_BTN_DLPAGE As String = “A2:C3”
Public Const MDB_BTN_DLPAGE_HELP As String = “D2”

Public Const MDB_BLOCKS As Integer = 1
Public Const MDB_PHASE As Integer = 2
Public Const MDB_BLOCKID As Integer = 3
Public Const MDB_TITLE As Integer = 4

 88

Public Const MDB_FUNCTION As Integer = 5
Public Const MDB_MEDIUM As Integer = 6
Public Const MDB_FLTORSIM As Integer = 7
Public Const MDB_BASELINEHOURS As Integer = 8
Public Const MDB_SKILLS As Integer = 9
Public Const MDB_NUMCOL As Integer = 8 ‘ set to max of other MDB_* (except
MDB_SKILLS which is variable)

‘ These refer to the DownloadTable on the Download Table page
Public Const DL_BLOCKS As Integer = 1
Public Const DL_PHASE As Integer = 2
Public Const DL_BLOCKID As Integer = 3
Public Const DL_PHASES As Integer = 4
‘ these are defined to be AFTER the DL_PHASES set of columns
Public Const DL_BASELINEHRS As Integer = 1
Public Const DL_TITLE As Integer = 2
Public Const DL_COSTDIFF As Integer = 3
Public Const DL_HOURDIFF As Integer = 4
Public Const DL_ORIGPHASES As Integer = 5

Public Const DL_BTN_SAVE As String = “B2:D2”
Public Const DL_BTN_SAVE_HELP As String = “E2”
Public Const DL_BTN_RESET As String = “B4:D4”
Public Const DL_BTN_RESET_HELP As String = “E4”

Public Const DL_CHART_LEFT As Double = 2032
Public Const DL_CHART_TOP As Double = 115
Public Const DL_CHART_WIDTH As Double = 600
Public Const DL_CHART_HEIGHT As Double = 425

Public Const SCENARIO_TIMEDATE As String = “C2”

Public Const FMT_ACCT As String = “_($* #,##0.00_);_($* (#,##0.00);_($* ““-
”“??_);_(@_)”

Public SB_Message As String
Public SB_Index As Integer
Public SB_HeartBeat As Variant

‘ **
‘ UpdateConfigPage()
‘ **
Sub UpdateConfigPage()
 Dim rPhaseCount As Range, rPhaseRef As Range, rFuncListStart As Range

 89

 Dim iIndexP As Integer, iIndex As Integer
 Dim sPhases() As String, sLineCounts() As String, sPhaseNames() As Variant
 Dim iOldCount As Integer

 Set rPhaseCount = Range(“PhaseCount”)
 If rPhaseCount.Value < 1 Then
 rPhaseCount.Value = 1
 End If

 Set rPhaseRef = Range(“PhaseRef”)
 Set rFuncListStart = Range(“FuncListStart”)

 ‘ **
 ‘ Phases Definition

 iOldCount = rPhaseRef.End(xlDown).Row - rPhaseRef.Row + 1

 ‘ReDim sPhaseNames(1 To iOldCount) As Variant
 ‘sPhaseNames = Application.Transpose(rPhaseRef.Resize(iOldCount, 1).Value)

 ‘ preserve the phase names in the FuncList table
 rFuncListStart.Offset(-1, 1).Resize(columnsize:=iOldCount).Value = _
 Application.Transpose(rPhaseRef.Resize(iOldCount, 1).Value)

 With rPhaseRef.CurrentRegion
 .ClearFormats
 .Validation.Delete
 End With
 rPhaseRef.Offset(0,3).Resize(WorksheetFunction.Max(rPhaseCount.Value,
iOldCount), 5).ClearContents

 If iOldCount < rPhaseCount.Value Then
 ‘ insert new-old rows after old
 rPhaseRef.Offset(iOldCount,0).Resize(rowsize:=rPhaseCount.Value -
iOldCount).Insert shift:=xlDown
 For iIndexP = iOldCount + 1 To rPhaseCount.Value
 rPhaseRef(iIndexP, 1).Value = “Phase “ & iIndexP
 Next iIndexP
 ElseIf iOldCount > rPhaseCount.Value Then
 ‘ insert 1 row after new
 rPhaseRef.Offset(rPhaseCount.Value, 0).Resize(rowsize:=1).Insert shift:=xlDown
 End If

 Set rPhaseRef = Range(“PhaseRef”)

 90

 ‘ formulas for the non-user-editable cells
 For iIndexP = 1 To rPhaseCount.Value
 If rPhaseRef(iIndexP, 1).Value = ““ Then
 rPhaseRef(iIndexP, 1).Value = “Phase “ & iIndexP
 End If
 With rPhaseRef.Offset(iIndexP - 1, 3).Resize(1, 5)
 .FormulaR1C1 = Array(_
 “=IF(ISTEXT(RC[-2]), VLOOKUP(RC[-2], PLATFORMLIST, 2, FALSE),
““““),” _
 “=IF(ISTEXT(RC[-3]), VLOOKUP(RC[-3], PLATFORMLIST, 3, FALSE),
““““),” _
 “=IF(ISTEXT(RC[-5]), COUNTA(OFFSET(FuncListStart,0,MATCH(RC[-5],
INDEX(PhaseRef, 0, 1), 0), 999, 1)), ““““),” _
 “=IF(AND(ISNUMBER(RC[-3]), ISNUMBER(R” & rPhaseRef.Row & “C[-
3])), RC[-3] / R” & rPhaseRef.Row & “C[-3], ““““),” _
 “=IF(AND(ISNUMBER(RC[-3]), ISNUMBER(R” & rPhaseRef.Row & “C[-
3])), RC[-3] / R” & rPhaseRef.Row & “C[-3], ““““)”)
 ‘.FormulaR1C1 = .Value
 End With
 Next iIndexP

 Call FormatTable(rPhaseRef, iNumDigits:=2)

 ‘ remove the color-fill that FormatTable puts for the columns we don’t want user-
editable
 With rPhaseRef.Offset(0, 3).Resize(columnsize:=5).Interior
 .Pattern = xlNone
 .TintAndShade = 0
 .PatternTintAndShade = 0
 End With

 With rPhaseRef.Offset(0, 1).Resize(rPhaseCount.Value, 1).Validation
 .Delete
 .Add Type:=xlValidateList, AlertStyle:=xlValidAlertStop, Operator:=xlBetween,
Formula1:=“=INDEX(PLATFORMLIST,0,1)”
 .IgnoreBlank = True
 .InCellDropdown = True
 .ShowInput = True
 .ShowError = True
 End With

 ‘ $ Flt and $ Sim columns, formatted accounting-style
 rPhaseRef.Offset(0, 3).Resize(columnsize:=2).NumberFormat = FMT_ACCT
 rPhaseRef.Offset(0, 5).Resize(columnsize:=1).NumberFormat = “0”

 91

 ‘ **
 ‘ Pipeline Skills
 ‘ **
 ‘ Function List
 With rFuncListStart.CurrentRegion
 .ClearFormats
 .Value = .Value
 End With

 ‘ Add a column before the extra column(s) so that it is not formatted in the table.
 If iOldCount < rPhaseCount.Value Then
 ‘ insert new-old columns after old
 rFuncListStart.Offset(0, iOldCount + 1).Resize(columnsize:=rPhaseCount.Value -
iOldCount).EntireColumn.Insert shift:=xlToRight
 ElseIf iOldCount > rPhaseCount.Value Then
 ‘ insert 1 row after new
 rFuncListStart.Offset(0,rPhaseCount.Value
1).Resize(columnsize:=1).EntireColumn.Insert shift:=xlToRight
 End If

 ‘ Clear all pre-existing range names of “FuncList#” and redefine.
 ‘ (This ensures we don’t have unnecessary names floating around.)
 For iIndex = ActiveWorkbook.Names.Count To 1 Step -1
 If Mid(ActiveWorkbook.Names(iIndex).Name, 1, 8) = “FuncList” And _
 ActiveWorkbook.Names(iIndex).Name <> “FuncListStart” Then
 ActiveWorkbook.Names(iIndex).Delete
 End If
 Next iIndex

 ReDim sPhases(1 To rPhaseCount.Value) As String
 Dim sLineCount As String ‘ TODO
 sLineCount = ““
 For iIndexP = 1 To rPhaseCount.Value
 ActiveWorkbook.Names.Add _
 Name:=“FuncList” & iIndexP, _
 RefersTo:=“=OFFSET(Config!” & rFuncListStart.Offset(0, iIndexP).Address
& ,” 0, 0, COUNTA(Config!” & _
 rFuncListStart.Offset(0, iIndexP).EntireColumn.Address & “) - 1, 1)”
 sPhases(iIndexP) = “=INDEX(PhaseRef, “ & iIndexP & ,” 1)”
 sLineCount = sLineCount & ,” ISTEXT(RC[“ & iIndexP & “])”
 Next iIndexP

 ‘ This will BREAK if this column mysteriously finds itself empty ...
 ‘ Well, not break, but it will fill this column in ALL ROWS IN THE WORKSHEET
 ‘ with this formula. Definitely not what we want/need, not certain if the

 92

 ‘ computer will do it nicely and/or be able to recover. (In XL2010, that would
 ‘ fill 1,048,576 rows.)
 rFuncListStart.Offset(1, 0).Resize(rowsize:=CFG_FUNCLEN - 1).FormulaR1C1 = _
 “=IF(OR(“ & Mid(sLineCount, 2) & “), R[-1]C + 1, ““““)”

 With rFuncListStart.Offset(-1, 1).Resize(columnsize:=rPhaseCount.Value)
 .Value = sPhases
 .Formula = .Value
 End With

 Call FormatTable(rFuncListStart.Offset(0,1).Resize(CFG_FUNCLEN,
rPhaseCount.Value), iNumDigits:=2)

End Sub

‘ **
‘ MakeParametersPage()
‘ Prereq: Config page properly and completely filled out.
‘ Result: Deletes, recreates, and populates the Parameters page.
‘ Note: the following pages depend on this data and therefore are also deleted
‘ when the Parameters page is deleted:
‘ MasterDB, Download Page, {Primary,Intermediate,Advanced,FRS} Model
‘ **

Sub MakeParametersPage()
 Dim saveDisplayAlerts As Boolean
 Dim bPageExists As Boolean, rMBRet As VbMsgBoxResult
 Dim wsParms As Worksheet
 Dim rSkillsList As Range, rPhaseRef As Range
 Dim rFuncList() As Range
 Dim rFirewalls As Range
 Dim rDegrades() As Range
 Dim sPhase As String
 Dim iIndex As Integer, iIndex2 As Integer

 Application.ScreenUpdating = False
 saveDisplayAlerts = Application.DisplayAlerts

 Set rSkillsList = Range(“SkillsList”)
 Set rPhaseRef = Range(“PhaseRef”)

 ReDim rFuncList(rPhaseRef.Rows.Count) As Range
 ReDim rDegrades(rPhaseRef.Rows.Count) As Range

 For iIndex = 1 To rPhaseRef.Rows.Count

 93

 Set rFuncList(iIndex) = Range(“FuncList” & iIndex)
 Next iIndex

 ‘ Check for the existence of all dependent worksheets.
 ‘ (If DEBUGFLAG, only check Parameters, all others ignore.)
 bPageExists = False
 bPageExists = bPageExists Or WorksheetExists(“Parameters”)
 If (Not DEBUGFLAG) Then
 bPageExists = bPageExists Or WorksheetExists(“MasterDB”)
 bPageExists = bPageExists Or WorksheetExists(“Download Page”)
 For iIndex = 1 To rPhaseRef.Rows.Count
 bPageExists = bPageExists Or WorksheetExists(“Model” & iIndex)
 Next iIndex
 End If

 ‘ Act on the existence of at least one worksheet ... the user isn’t notified of
 ‘ the specific worksheet, assuming they can figure it out.
 If bPageExists Then
 rMBRet = MsgBox(“Regenerating the Parameters worksheet will change results in
several other worksheets,” & _
 “some of which are present. In order to continue, these worksheets will be
deleted.” & vbCrLf & _
 “[Parameters, MasterDB, Download Page, and Model*]” & _
 vbCrLf & vbCrLf & _
 “Is that okay?” & _
 vbCrLf & vbCrLf & _
 “If not, click ““No”“ and back up the relevant tabs before trying this
again.,” _
 Buttons:=vbYesNo Or vbQuestion Or vbDefaultButton2, Title:=“Delete
Existing Pages?”)
 ‘ vbYesNo gives the two buttons
 ‘ vbQuestion adds a question-mark icon (vbInformation is another)
 ‘ vbDefaultButton2 means default to the second button in case the user hits enter
right away
 ‘ (i.e., default to *not* changing things)

 If rMBRet = vbNo Then
 Exit Sub
 Else
 Application.DisplayAlerts = False
 If WorksheetExists(“Parameters”) Then
 Sheets(“Parameters”).Delete
 End If ‘ If WorksheetExists(“Parameters”) ...

 If (Not DEBUGFLAG) Then

 94

 If WorksheetExists(“MasterDB”) Then
 Sheets(“MasterDB”).Delete
 End If ‘ If WorksheetExists(“MasterDB”) ...

 If WorksheetExists(“Download Page”) Then
 Sheets(“Download Page”).Delete
 End If ‘ If WorksheetExists(“Download Page”) ...

 For iIndex = 1 To rPhaseRef.Rows.Count
 If WorksheetExists(“Model” & iIndex) Then
 Sheets(“Model” & iIndex).Delete
 End If ‘ If WorksheetExists(“Model” & iIndex) ...
 Next iIndex
 End If

 Application.DisplayAlerts = saveDisplayAlerts
 End If ‘ If rMBRet = vbNo ...
 End If ‘ If bPageExists ...

 Set wsParms = Sheets.Add(, after:=wsConfig)
 wsParms.Name = “Parameters”

 Set rFirewalls = wsParms.Range(STARTCELL_PARAMETERS).Resize(2 *
rPhaseRef.Rows.Count, rSkillsList.Rows.Count)
 rSkillsList.Resize(, 1).Copy
 rFirewalls.Offset(-1, 0).Resize(1).PasteSpecial xlPasteValues, , False, True
‘ SkipBlanks:=False, Transpose:=True

 For iIndex = 1 To rPhaseRef.Rows.Count
 rFirewalls.Offset(2 * (iIndex - 1), -1).Resize(2, 1) = _
 Application.Transpose(Array(rPhaseRef(iIndex, 1) & “ Enter,” _
 rPhaseRef(iIndex, 1) & “ Exit”))
 Next iIndex

 rFirewalls.Name = “Firewalls”
 rFirewalls.ColumnWidth = 12.57 ‘ MAGIC NUMBER
 rFirewalls.Offset(0, -1).Resize(1, 1).EntireColumn.autofit

 Call FormatTable(rFirewalls, bDataEntry:=True, iNumDigits:=4)

 ‘ **
 ‘ Set up each DEGRADE VALUES table

 For iIndex = rPhaseRef.Rows.Count To 1 Step -1
 If iIndex = rPhaseRef.Rows.Count Then

 95

 Set rDegrades(iIndex) = rFirewalls.Offset(0, rSkillsList.Rows.Count +
1).Resize(rFuncList(iIndex).Rows.Count, 2 + 2 * rPhaseRef.Rows.Count)
 Else
 ‘ magic number: 5 = 1 + # of rows between each DEG block
 Set rDegrades(iIndex) = rDegrades(iIndex + 1).End(xlDown).Offset(5,
0).Resize(rFuncList(iIndex).Rows.Count, 2 + 2 * rPhaseRef.Rows.Count)
 End If

 rDegrades(iIndex).Name = “Degrades” & iIndex
 sPhase = rPhaseRef(iIndex, 1)

 With rDegrades(iIndex).Resize(1, 1)
 .Offset(-3, 2) = sPhase & “ MEDIA DEGRADES TO ...”

 For iIndex2 = rPhaseRef.Rows.Count To 1 Step -1
 .Offset(-2, 2 * (rPhaseRef.Rows.Count - iIndex2 + 1)) = .”.. “ &
rPhaseRef(iIndex2, 1)
 .Offset(-2, 2 * (rPhaseRef.Rows.Count - iIndex2 +
1)).Resize(columnsize:=2).Merge
 .Offset(-1, 2 * (rPhaseRef.Rows.Count - iIndex2 + 1)).Resize(1, 2) =
Array(“Flt,” “Sim”)
 Next iIndex2
 .Offset(-1, 0).Resize(1, 2) = Array(“#,” “Function”)
 End With
 rDegrades(iIndex).Resize(rFuncList(iIndex).Rows.Count, 1).Value =
Range(“FuncListStart”).Resize(rFuncList(iIndex).Rows.Count, 1).Value
 rDegrades(iIndex).Offset(0, 1).Resize(, 1).Value = rFuncList(iIndex).Value
 Call FormatTable(rDegrades(iIndex).Offset(0, 2).Resize(, 2 *
rPhaseRef.Rows.Count), bDataEntry:=True, iNumDigits:=2)
 rDegrades(iIndex).Offset(0, 2).NumberFormat = “0.00”

 Next iIndex

 ‘ **
 ‘ Cleanup
 rDegrades(1).Resize(1, 2).EntireColumn.autofit
 rDegrades(1).Offset(0, 2).ColumnWidth = 8 ‘ magic number: 8, arbitrary

 ‘ **
 ‘ Add the button
 Dim btnMasterDB As Button

 With Range(PR_BTN_MASTERDB)
 Set btnMasterDB = ActiveSheet.Buttons.Add(.Left, .Top, .Width, .Height)
 End With

 96

 btnMasterDB.OnAction = “MakeMasterDBPage”
 btnMasterDB.Characters.Text = “Make Master DB Worksheet”

 With Range(PR_BTN_MASTERDB_HELP)
 .Value = “?”
 .HorizontalAlignment = xlCenter
 .AddComment (“Fill out the table of Enter/Exit table as well” & vbCrLf & _
 “the “ & rPhaseRef.Rows.Count & “ tables for media degrades.” & vbCrLf
& _
 vbCrLf & _
 “When complete, click this button to continue.”)
 .Comment.Shape.TextFrame.AutoSize = True
 End With

 ‘ **
 ‘ Restore control to the user
 rFirewalls(1, 1).Select
 wsParms.Activate

 Application.CutCopyMode = False
 Application.DisplayAlerts = saveDisplayAlerts
 Application.ScreenUpdating = True
End Sub

‘ **
‘ MakeMasterDBPage()
‘ Prereq: Config/Parameters page properly and completely filled out.
‘ Result: Deletes, recreates, and populates the MasterDB page, only
‘ including those column the user needs to edit; all other columns
‘ are added in MakeDownloadPage()
‘ Note: the following pages depend on this data and therefore are also deleted
‘ when the MasterDB page is deleted:
‘ Download Page, {Primary,Intermediate,Advanced,FRS} Model
‘ **

Sub MakeMasterDBPage()
 Dim saveDisplayAlerts As Boolean, saveSelectionW As Worksheet, saveSelectionR
As Range

 Dim bPageExists As Boolean, rMBRet As VbMsgBoxResult
 Dim wsMasterDB As Worksheet
 Dim rSkillsList As Range, rPhaseRef As Range
 Dim iIndex As Integer, iIndexP As Integer, iIndexS As Integer

 97

 Application.ScreenUpdating = False
 Set saveSelectionW = Selection.Worksheet
 Set saveSelectionR = Selection
 saveDisplayAlerts = Application.DisplayAlerts

 Set rSkillsList = Range(“SkillsList”)
 Set rPhaseRef = Range(“PhaseRef”)

 ‘ Check for the existence of all dependent worksheets.
 ‘ (If DEBUGFLAG, only check MasterDB, all others ignore.)
 bPageExists = False
 bPageExists = bPageExists Or WorksheetExists(“MasterDB”)
 If (Not DEBUGFLAG) Then
 bPageExists = bPageExists Or WorksheetExists(“Download Page”)
 For iIndex = 1 To rPhaseRef.Rows.Count
 bPageExists = bPageExists Or WorksheetExists(rPhaseRef(iIndex, PR_PHASE)
& “ Model”)
 Next iIndex
 End If

 ‘ Act on the existence of at least one worksheet ... the user isn’t notified of
 ‘ the specific worksheet, assuming they can figure it out.
 If bPageExists Then
 rMBRet = MsgBox(“Generating the MasterDB worksheet will change results in
several other worksheets,” & _
 “some of which are present. In order to continue, these worksheets will be
deleted.” & vbCrLf & _
 “[MasterDB, Download Page, and all Model pages]” & _
 vbCrLf & vbCrLf & _
 “Is that okay?” & _
 vbCrLf & vbCrLf & _
 “If not, click ““No”“ and back up the relevant tabs before trying this
again.,” _
 Buttons:=vbYesNo Or vbQuestion Or vbDefaultButton2, Title:=“Delete
Existing Pages?”)
 ‘ vbYesNo gives the two buttons
 ‘ vbQuestion adds a question-mark icon (vbInformation is another)
 ‘ vbDefaultButton2 means default to the second button in case the user hits enter
right away
 ‘ (i.e., default to *not* changing things)

 If rMBRet = vbNo Then
 Exit Sub
 Else
 Application.DisplayAlerts = False

 98

 If WorksheetExists(“MasterDB”) Then
 Sheets(“MasterDB”).Delete
 End If ‘ If WorksheetExists(“MasterDB”) ...

 If (Not DEBUGFLAG) Then
 If WorksheetExists(“Download Page”) Then
 Sheets(“Download Page”).Delete
 End If ‘ If WorksheetExists(“Download Page”) ...

 For iIndex = 1 To rPhaseRef.Rows.Count
 If WorksheetExists(“Model” & iIndex) Then
 Sheets(“Model” & iIndex).Delete
 End If ‘ If WorksheetExists(“Model” & iIndex) ...
 Next iIndex
 End If

 Application.DisplayAlerts = saveDisplayAlerts
 End If ‘ If rMBRet = vbNo ...
 End If ‘ If bPageExists ...

 Set wsMasterDB = Sheets.Add(, after:=Sheets(“Parameters”))
 wsMasterDB.Name = “MasterDB”

 With wsMasterDB.Range(STARTCELL_MASTERDB).Offset(0, -1)
 .Offset(, MDB_BLOCKS).Resize(1, MDB_NUMCOL).Value = _
 Array(“Blocks,” “Phase,” “Block ID,” “Title,” “Function,” “Medium,” “Flt or
Sim,” “Baseline Hours”)

 For iIndexS = 1 To rSkillsList.Rows.Count
 With .Offset(, MDB_SKILLS + iIndexS - 1)
 .Value = “Skill “ & iIndexS
 .AddComment Text:=rSkillsList(iIndexS, 1).Value
 End With
 Next iIndexS
 End With

 wsMasterDB.ListObjects.Add(xlSrcRange, _
 Range(STARTCELL_MASTERDB,
Range(STARTCELL_MASTERDB).CurrentRegion), , xlYes).Name = “MasterTable”

 rSkillsList.Resize(, 1).Copy
 wsMasterDB.Range(STARTCELL_MASTERDB).Offset(-1, MDB_SKILLS -
1).PasteSpecial xlPasteValues, , SkipBlanks:=False, Transpose:=True

 99

 MsgBox “Please fill in this master database with appropriate data.,”
Buttons:=vbInformation
 ‘ vbInformation adds an info “i” icon (vbQuestion is another)

 ‘ **
 ‘ Set up the continuation button
 Dim btnRemainder As Button

 With Range(MDB_BTN_DLPAGE)
 Set btnRemainder = ActiveSheet.Buttons.Add(.Left, .Top, .Width, .Height)
 End With
 btnRemainder.OnAction = “MakeRemainingPages”
 btnRemainder.Characters.Text = “Make Remaining Pages”

 With Range(MDB_BTN_DLPAGE_HELP)
 .Value = “?”
 .HorizontalAlignment = xlCenter
 .AddComment (“Fill out the Master DB.” & vbCrLf & _
 vbCrLf & _
 “When complete, click this button to make the remainder of the model.”)
 .Comment.Shape.TextFrame.AutoSize = True
 End With
 ‘ **
 ‘ Restore control to the user.

 ‘ Two alternatives for handling the selection:
 ‘ (1) Ensure the previous selection is selected
 ‘ (2) Select the first cell for data entry in MasterDB
 wsMasterDB.Activate
 wsMasterDB.Range(STARTCELL_MASTERDB).Offset(1, 0).Select

 Application.CutCopyMode = False
 Application.DisplayAlerts = saveDisplayAlerts
 Application.ScreenUpdating = True
End Sub

‘ **
‘ MakeRemainingPages()
‘ Prereq: Config, Parameters, and MasterDB pages properly and completely filled out.
‘ Result: Adds columns to the MasterDB page/range/table;
‘ Optionally hides new columns ;
‘ Optionally deletes and recreates the Download Page and all Model pages.
‘ Note: the following pages depend on this data and therefore are also deleted
‘ when the MasterDB page is modified:

 100

‘ {Primary,Intermediate,Advanced,FRS} Model
‘ **

Sub MakeRemainingPages()
 Dim saveDisplayAlerts As Boolean, saveSelectionW As Worksheet, saveSelectionR
As Range
 Dim bPageExists As Boolean, rMBRet As VbMsgBoxResult

 Dim wsMasterDB As Worksheet, wsDownloadPage As Worksheet
 Dim rNewColumns As Range
 Dim rSkillsList As Range, rPhaseRef As Range
 Dim sFormulaFlt As String, sFormulaSim As String, sFormulaMax As String
 Dim iIndex As Integer, iIndexS As Integer, iIndexP As Integer, iOffset As Integer

 Dim rFirewalls As Range
 Dim rDownloadTableRange As Range
 Dim iNumRows As Integer, iNumCols As Integer, sTmp As String
 Dim rTmp As Range ‘ for iterating over things ...
 Dim rDiffTable As Range, rBaselineTable As Range, rWhatIfTable As Range
 Dim rHoursComparison As Range, rAnnualCostDiff As Range

 Dim rCostData As Range, rHoursData As Range

 Application.ScreenUpdating = False
 saveDisplayAlerts = Application.DisplayAlerts

 Call StatusInitiate

 Set wsMasterDB = Sheets(“MasterDB”)

 Set rSkillsList = Range(“SkillsList”)
 Set rPhaseRef = Range(“PhaseRef”)
 Set rFirewalls = Range(“Firewalls”)

 Call StatusUpdate(“Checking for existing tables ...”)
 ‘ Check for the existence of all dependent worksheets.
 ‘ (If DEBUGFLAG, only check MasterDB, all others ignore.)
 bPageExists = False
 ‘ this checks if MasterDB has already been modified/refined/augmented
 bPageExists = bPageExists Or Not
wsMasterDB.ListObjects(1).HeaderRowRange.Find(“Cost”) Is Nothing
 bPageExists = bPageExists Or WorksheetExists(“Download Page”)
 If (Not DEBUGFLAG) Then
 For iIndexP = 1 To rPhaseRef.Rows.Count
 bPageExists = bPageExists Or WorksheetExists(“Model” & iIndexP)

 101

 Next iIndexP
 End If
 ‘ Act on the existence of at least one worksheet ... the user isn’t notified of
 ‘ the specific worksheet, assuming they can figure it out.
 If bPageExists Then
 rMBRet = MsgBox(“Creating the Download Page worksheet will change results in
several other worksheets,” & _
 “some of which are present. In order to continue, these worksheets will be
deleted.” & vbCrLf & _
 “[(changes to) MasterDB, Download Page, and all Model pages]” & _
 vbCrLf & vbCrLf & _
 “Is that okay?” & _
 vbCrLf & vbCrLf & _
 “If not, click ““No”“ and back up the relevant tabs before trying this
again.,” _
 Buttons:=vbYesNo Or vbQuestion Or vbDefaultButton2, Title:=“Delete
Existing Pages?”)
 ‘ perhaps this will make the window go away
 Application.ScreenUpdating = True
 Application.ScreenUpdating = False
 ‘ vbYesNo gives the two buttons
 ‘ vbQuestion adds a question-mark icon (vbInformation is another)
 ‘ vbDefaultButton2 means default to the second button in case the user hits enter
right away
 ‘ (i.e., default to *not* changing things)

 If rMBRet = vbNo Then
 Exit Sub
 Else
 Application.DisplayAlerts = False

 ‘ if “Cost” exists, remove it and everything to the right in this table
 On Error GoTo Skip:
 Dim iRow As Integer
 iRow = Application.Match(“Cost,” Range(“MasterDB!MasterTable”).Rows(0),
0)
 Range(Range(“MasterDB!MasterTable”).Offset(-1, iRow - 1).Resize(1, 1), _
 Range(“MasterDB!MasterTable”).Offset(-1, iRow - 1).Resize(1,
1).End(xlToRight)).EntireColumn.Delete
Skip:
 On Error GoTo 0

 If WorksheetExists(“Download Page”) Then
 Sheets(“Download Page”).Delete
 End If ‘ If WorksheetExists(“Download Page”) ...

 102

 If (Not DEBUGFLAG) Then
 For iIndexP = 1 To rPhaseRef.Rows.Count
 If WorksheetExists(“Model” & iIndexP) Then
 Sheets(“Model” & iIndexP).Delete
 End If ‘ If WorksheetExists(“Model” & iIndexP) ...
 Next iIndexP
 End If

 Application.DisplayAlerts = saveDisplayAlerts
 End If ‘ If rMBRet = vbNo ...
 End If ‘ If bPageExists ...

 ‘ **
 ‘ *** Download Page, part 1
 ‘ **
 Call StatusUpdate(“Creating the Download Page ...”)

 Dim sTable As String
 sTable = “Download Page”

 Set wsDownloadPage = Sheets.Add(after:=Sheets(“MasterDB”))
 wsDownloadPage.Name = “Download Page”
 iNumRows = Range(“MasterTable[[#All]]”).Rows.Count - 1
 iNumCols = 3 + 2 * rPhaseRef.Rows.Count + 4 ‘ magic numbers: 3 is the number of
pre-phase columns,
 ‘ and 4 is the number of post-phase columns only
Download Page

 ‘ change DL_HOURDIFF if more columns added or shifted
 Set rDownloadTableRange =
wsDownloadPage.Range(STARTCELL_DLPAGE).Offset(1,
0).Resize(Range(“MasterTable”).Rows.Count, iNumCols)

 Dim iCol As Integer
 iCol = 0

 Dim aStr() As String
 ReDim aStr(1 To iNumCols) As String

 With rDownloadTableRange
 Call StatusUpdate

 ‘.Name = “DownloadTableRange”

 103

 aStr(DL_BLOCKS) = “Blocks”
 aStr(DL_PHASE) = “Phase”
 aStr(DL_BLOCKID) = “Block ID”

 For iIndexP = 1 To rPhaseRef.Rows.Count
 aStr(DL_PHASES + iIndexP - 1) = “Phase “ & iIndexP
 aStr(rPhaseRef.Rows.Count + DL_PHASES + iIndexP - 1) = “OrigPhase “ &
iIndexP
 Next iIndexP
 iCol = 3 + 2 * rPhaseRef.Rows.Count ‘ magic number: 3 is the number of pre-phase
columns

 aStr(iCol + DL_BASELINEHRS) = “Baseline Hours”
 aStr(iCol + DL_TITLE) = “Title”
 aStr(iCol + DL_COSTDIFF) = “Cost Difference”
 aStr(iCol + DL_HOURDIFF) = “Hour Difference”
 ‘ ASSERT: we have filled all 15 of aStr (based on 4 phases)

 .Offset(-1, 0).Resize(rowsize:=1).Value = aStr
 wsDownloadPage.ListObjects.Add(xlSrcRange, .CurrentRegion, , xlYes).Name =
“DownloadTable”

 Range(“DownloadTable[Blocks]”).Resize(Range(“MasterTable”).Rows.Count,
1).Formula = “=MasterTable[@Blocks]”
 Range(“DownloadTable[Blocks]”).Value =
Range(“DownloadTable[Blocks]”).Value
 Range(“DownloadTable[Phase]”).Value = Range(“MasterTable[Phase]”).Value
 Range(“DownloadTable[Block ID]”).Value = Range(“MasterTable[Block
ID]”).Value

 For iIndexP = 1 To rPhaseRef.Rows.Count
 Range(“DownloadTable[[Phase “ & iIndexP & “]]”).Formula = “=([@Phase] =
“““ & rPhaseRef(iIndexP, 1) & “““) * MasterTable[[Baseline Hours]]”

 Range(“DownloadTable[[OrigPhase “ & iIndexP & “]]”).Value =
Range(“DownloadTable[[Phase “ & iIndexP & “]]”).Value
 Range(“DownloadTable[[#Headers],[Phase “ & iIndexP & “]]”).NumberFormat =
““““ & rPhaseRef(iIndexP, 1) & “““ @”
 Next iIndexP

 Range(“DownloadTable[Baseline Hours]”).Value = Range(“MasterTable[Baseline
Hours]”).Value
 Range(“DownloadTable[Title]”).Value = Range(“MasterTable[Title]”).Value

 Call StatusUpdate

 104

 Dim sTemp As String ‘ TODO
 For iIndex = 1 To iNumRows
 Call StatusUpdate
 .Cells(iIndex, DL_BLOCKID).AddComment (.Cells(iIndex, iCol +
DL_TITLE).Value)
 .Cells(iIndex, DL_BLOCKID).Comment.Shape.TextFrame.AutoSize = True
 Next iIndex

 End With

 Range(“DownloadTable”).Columns.autofit

 sTemp = Range(“DownloadTable[Phase]”).Cells(1, 1).Value
 Range(“DownloadTable[Phase]”).Cells(1, 1).Value = “W” ‘ W == wide character
 Range(“DownloadTable[Phase]”).Cells(1, 1).Columns.autofit
 Range(“DownloadTable[Phase]”).Cells(1, 1).Value = sTemp

 With Range(“DownloadTable[[Phase 1]:[Phase “ & rPhaseRef.Rows.Count & “]]”)
 .FormatConditions.Add Type:=xlExpression, Formula1:=“=NOT(“ & _
 Range(“DownloadTable[Phase 1]”).Resize(1, 1).Address(rowabsolute:=False,
columnabsolute:=False) & “ = “ & _
 Range(“DownloadTable[OrigPhase 1]”).Resize(1,
1).Address(rowabsolute:=False, columnabsolute:=False) & “)”
 With .FormatConditions(.FormatConditions.Count)
 .StopIfTrue = False
 .Interior.PatternColorIndex = xlAutomatic
 .Interior.Color = 65535
 .Interior.TintAndShade = 0
 End With

 .FormatConditions.Add Type:=xlExpression, Formula1:=“=NOT(SUM(“ & _
 Range(“DownloadTable[[Phase 1]:[Phase “ & rPhaseRef.Rows.Count &
“]]”).Resize(rowsize:=1).Address(rowabsolute:=False, columnabsolute:=True) & “) =
“ & _
 Range(“DownloadTable[Baseline
Hours]”).Resize(rowsize:=1).Address(rowabsolute:=False, columnabsolute:=True) & “)”
 With .FormatConditions(.FormatConditions.Count)
 .StopIfTrue = False
 .Font.Color = -16776961
 .Font.TintAndShade = 0
 End With
 End With

 ‘ **

 105

 ‘ *** Model pages
 ‘ **

 For iIndexP = 1 To rPhaseRef.Rows.Count
 Call StatusUpdate(“Creating the “ & rPhaseRef(iIndexP, 1) & “ Model ...”)
 Call MakeModelPage(iIndexP)
 Next iIndexP

 ‘ **
 ‘ *** Download Page, part 2
 ‘ **

 Call StatusUpdate(“Finishing the Download Page ...”)

 Set rDiffTable = Range(“DownloadTable”).Offset(1,
Range(“DownloadTable”).Columns.Count + 3).Resize(2 * rPhaseRef.Rows.Count,
rSkillsList.Rows.Count)

 Const DL_TABLE_SEP As Integer = 3 ‘ header row plus two gap rows
 Set rBaselineTable = rDiffTable.Offset(DL_TABLE_SEP + 2 *
rPhaseRef.Rows.Count, 0)
 Set rWhatIfTable = rBaselineTable.Offset(DL_TABLE_SEP + 2 *
rPhaseRef.Rows.Count, 0)

 ‘ We’ll set up rDiffTable last since it depends on the other two ...
 ‘ perhaps not strictly necessary, but it makes sense.

 With rBaselineTable
 .Name = “BaselineTable”
 .Offset(-1, -1).Resize(1, 1).Value = “Baseline”
 .Offset(-1, 0).Resize(rowsize:=1).Value = Range(“Firewalls”).Offset(-1,
0).Resize(rowsize:=1).Value
 .Offset(0, -1).Resize(columnsize:=1).Value = Range(“Firewalls”).Offset(0, -
1).Resize(columnsize:=1).Value
 .Offset(0, -1).Resize(rFirewalls.Rows.Count, 1).Value =
Range(“Firewalls”).Offset(0, -1).Resize(rFirewalls.Rows.Count, 1).Value
 .Offset(-1, 0).Resize(1, rFirewalls.Columns.Count).Value =
Range(“Firewalls”).Offset(-1, 0).Resize(1, rFirewalls.Columns.Count).Value
 End With

 With rWhatIfTable
 .Name = “WhatIfTable”
 .Offset(-1, -1).Resize(.Rows.Count + 1, .Columns.Count + 1).Value = _
 rBaselineTable.Offset(-1, -1).Resize(.Rows.Count + 1, .Columns.Count +
1).Value

 106

 .Offset(-1, -1).Resize(1, 1).Value = “What-If”
 End With

 With rDiffTable
 .Name = “DiffTable”
 .Offset(-1, -1).Resize(.Rows.Count + 1, .Columns.Count + 1).Value = _
 rBaselineTable.Offset(-1, -1).Resize(.Rows.Count + 1, .Columns.Count +
1).Value
 .Offset(-1, -1).Resize(1, 1).Value = “Difference”
 End With

 Call StatusUpdate

 For iIndexP = 1 To rPhaseRef.Rows.Count
 Range(“DownloadTable[Phase “ & iIndexP & “]”).Value = Range(“Table1[[Phase
“ & iIndexP & “]]”).Value

 For iIndexS = 1 To rSkillsList.Rows.Count
 Call StatusUpdate
 rBaselineTable(2 * iIndexP - 1, iIndexS).Formula = _
 “=INDEX(Table” & iIndexP & “[Baseline GALE “ & iIndexS & “], 1)”
 rBaselineTable(2 * iIndexP, iIndexS).Formula = _
 “=INDEX(Table” & iIndexP & “[Baseline GALE “ & iIndexS & “], “ & _
 “COUNT(Table” & iIndexP & “[Baseline GALE “ & iIndexS & “]))”

 rWhatIfTable(2 * iIndexP - 1, iIndexS).Formula = _
 “=INDEX(Table” & iIndexP & “[What If GALE “ & iIndexS & “], 1)”
 rWhatIfTable(2 * iIndexP, iIndexS).Formula = _
 “=INDEX(Table” & iIndexP & “[What If GALE “ & iIndexS & “], “ & _
 “COUNT(Table” & iIndexP & “[What If GALE “ & iIndexS & “]))”

 rDiffTable(2 * iIndexP - 1, iIndexS).Formula = _
 “=“ & rWhatIfTable(2 * iIndexP - 1, iIndexS).Address & “ - “ &
rBaselineTable(2 * iIndexP - 1, iIndexS).Address
 rDiffTable(2 * iIndexP, iIndexS).Formula = _
 “=“ & rWhatIfTable(2 * iIndexP, iIndexS).Address & “ - “ & rBaselineTable(2
* iIndexP, iIndexS).Address
 Next iIndexS
 Next iIndexP

 rDiffTable.Offset(0, -1).Resize(1, rSkillsList.Rows.Count + 1).EntireColumn.autofit

 Call StatusUpdate
 Call FormatTable(rBaselineTable, bDataEntry:=False)
 Call StatusUpdate

 107

 Call FormatTable(rWhatIfTable, bDataEntry:=False)
 Call StatusUpdate
 Call FormatTable(rDiffTable, bDataEntry:=False)

 Set rCostData = rDiffTable.Offset(2 - rDiffTable.Cells(1, 1).Row,
rSkillsList.Rows.Count + 2).Resize(rPhaseRef.Rows.Count, 3) ‘ magic numbers
 Set rHoursData = rCostData.Offset(0, 5) ‘ initially set one more away so FormatTable
can work cleanly, then we’ll delete the empty column
 rCostData.Name = “CostData”
 rHoursData.Name = “HoursData”

 With rCostData.Resize(1, 1)
 .Offset(-1, 0) = “Baseline”
 .Offset(-1, 1) = “What If”
 .Offset(-1, 2) = “Difference”
 .Offset(rPhaseRef.Rows.Count, 0) = “Cost”
 .Offset(rPhaseRef.Rows.Count, 2).FormulaR1C1 = “=SUM(R[-4]C:R[-1]C)”
 End With

 With rHoursData.Offset(-1, -1).Resize(1, 1)
 .Value = “$1,000”
 .HorizontalAlignment = xlCenter
 .Font.Bold = False
 End With
 rHoursData.Offset(0, -1).Resize(rPhaseRef.Rows.Count, 1).Value =
rPhaseRef.Resize(rPhaseRef.Rows.Count, 1).Value
 rHoursData.Offset(-1, 0).Resize(1, 3).Value = rCostData.Offset(-1, 0).Resize(1,
3).Value
 rHoursData.Offset(rPhaseRef.Rows.Count, 0).Resize(1, 1) = “Hours”
 rHoursData.Offset(rPhaseRef.Rows.Count, 2).Resize(1, 1).FormulaR1C1 =
“=SUM(R[-4]C:R[-1]C)”

 For iIndexP = 1 To rPhaseRef.Rows.Count
 rCostData(iIndexP, 1).Formula = “=SUM(Table” & iIndexP & “[Baseline
Cost])/1000”
 rCostData(iIndexP, 2).Formula = “=SUM(Table” & iIndexP & “[What If
Cost])/1000”
 rCostData(iIndexP, 3).FormulaR1C1 = “=rc[-1] - rc[-2]”

 rHoursData(iIndexP, 1).Formula = “=SUM(DownloadTable[OrigPhase “ & iIndexP
& “])”
 rHoursData(iIndexP, 2).Formula = “=SUM(DownloadTable[Phase “ & iIndexP &
“])”
 rHoursData(iIndexP, 3).FormulaR1C1 = “=rc[-1] - rc[-2]”
 Next iIndexP

 108

 Call StatusUpdate
 Call FormatTable(rCostData, bDataEntry:=False)
 Call StatusUpdate
 Call FormatTable(rHoursData, bDataEntry:=False, iNumDigits:=1)
 rHoursData.Offset(rPhaseRef.Rows.Count, 2).Resize(1, 1).NumberFormat = “0.0”

 rHoursData.Offset(0, -2).Resize(1, 1).EntireColumn.Delete ‘ this was an empty
column kept in for ease of FormatTable

 Union(rCostData.Resize(4, 4), rHoursData).EntireColumn.autofit

 ‘ *** summary table, next to hourdata
 Set rHoursComparison = rHoursData.Offset(0, rHoursData.Columns.Count +
2).Resize(2, rSkillsList.Rows.Count)

 rHoursComparison.Offset(-1, 0).Resize(rowsize:=1).Value =
Range(“Firewalls”).Offset(-1, 0).Resize(1, rFirewalls.Columns.Count).Value
 rHoursComparison.Offset(0, -1).Resize(columnsize:=1).Value =
WorksheetFunction.Transpose(Array(“Baseline,” “What If”))
 rHoursComparison.Rows(1).FormulaArray = “=“ & rBaselineTable.Rows(2 *
rPhaseRef.Rows.Count).Address
 rHoursComparison.Rows(2).FormulaArray = “=“ & rWhatIfTable.Rows(2 *
rPhaseRef.Rows.Count).Address

 rHoursComparison.Name = “HoursComparison”

 Call FormatTable(rHoursComparison, bDataEntry:=False, iNumDigits:=2)

 For iIndexS = 1 To rSkillsList.Rows.Count
 With rHoursComparison(2, iIndexS)
 .FormatConditions.Add Type:=xlCellValue, Operator:=xlLess, _
 Formula1:=“=index(SkillsList,” & iIndexS & ,”2)”
 .FormatConditions(.FormatConditions.Count).SetFirstPriority

 With .FormatConditions(1).Interior
 .PatternColorIndex = xlAutomatic
 .Color = 65535
 .TintAndShade = 0
 End With
 .FormatConditions(1).StopIfTrue = False
 End With
 Next iIndexS

 109

 ‘ *** Annual cost difference
 Set rAnnualCostDiff = rHoursComparison.Offset(3, 1).Resize(1, 2)
 With rAnnualCostDiff
 .Resize(1, 1).Formula = “=AnnualThroughput * “ &
rCostData.Offset(rPhaseRef.Rows.Count, 2).Resize(1, 1).Address
 .Offset(0, -1).Resize(1, 1).Value = “Annual Cost Difference”
 .Merge
 End With
 Call FormatTable(rAnnualCostDiff, bDataEntry:=False, rowHeaderAlign:=xlRight)

 rAnnualCostDiff.Name = “AnnualCostDiff”

 ‘ Accounting format, so that 0 looks like “$-,” etc.
 Union(rCostData, _
 rCostData.Offset(rPhaseRef.Rows.Count, 2).Resize(1, 1), _
 rAnnualCostDiff).NumberFormat = FMT_ACCT

 ‘ **
 ‘ Baseline GRAPH
 wsDownloadPage.Activate

 Dim chBaseline As Chart, chWhatIf As Chart, iTmp As Integer
 Set chBaseline = wsDownloadPage.ChartObjects.Add(DL_CHART_LEFT,
DL_CHART_TOP, DL_CHART_WIDTH, DL_CHART_HEIGHT).Chart
 Set chWhatIf = wsDownloadPage.ChartObjects.Add(DL_CHART_LEFT,
DL_CHART_TOP + DL_CHART_HEIGHT + 20, DL_CHART_WIDTH,
DL_CHART_HEIGHT).Chart

 With chBaseline
 .ChartType = xl3DColumn
 .SetSourceData Source:=rBaselineTable.CurrentRegion
 .Location where:=xlLocationAsObject, Name:=“Download Page”
 .HasTitle = True
 .ChartTitle.Text = “Baseline”
 End With

 With chWhatIf
 .ChartType = xl3DColumn
 .SetSourceData Source:=rWhatIfTable.CurrentRegion
 .Location where:=xlLocationAsObject, Name:=“Download Page”
 .HasTitle = True
 .ChartTitle.Text = “What If”
 End With

 For iTmp = 1 To wsDownloadPage.ChartObjects.Count

 110

 With wsDownloadPage.ChartObjects(iTmp).Chart
 .Legend.Delete
 .PlotVisibleOnly = False
 .Axes(xlValue).TickLabels.NumberFormat = “0.00”
 .Axes(xlValue).MajorGridlines.Select
 .SeriesCollection(2 * rPhaseRef.Rows.Count).Select
 .SeriesCollection(2 * rPhaseRef.Rows.Count).ApplyDataLabels
 .SeriesCollection(2 * rPhaseRef.Rows.Count).DataLabels.NumberFormat =
“#,##0.00”
 End With
 Next iTmp

 ‘ **
 ‘ Pretty things up

 Range(Range(“DownloadTable[[#Headers],[OrigPhase 1]]”).EntireColumn, _
 rCostData.Resize(1, 1).Offset(0, -1).EntireColumn).Hidden = True
 wsDownloadPage.Cells(Range(“DownloadTable”).Resize(1, 1).Row, _
 rCostData.Resize(1, 1).Column).Select
 ActiveWindow.freezepanes = True
 Range(“DownloadTable[[Phase 1]]”).Cells(1, 1).Select

 ‘ **
 ‘ Add the buttons
 Call StatusReset

 Dim btnReset As Button, btnSave As Button ‘ TODO

 With Range(DL_BTN_RESET)
 Set btnReset = ActiveSheet.Buttons.Add(.Left, .Top, .Width, .Height)
 End With
 btnReset.OnAction = “DownloadReset”
 btnReset.Characters.Text = “Reset Hours”

 With Range(DL_BTN_RESET_HELP)
 .Value = “?”
 .HorizontalAlignment = xlCenter

.AddComment (“Resets all ““What If”“ hours for all phases to ““Baseline
Hours”.”“ & vbCrLf & vbCrLf &”NOTE! This action cannot be undone! If you
want to save the current state” & vbCrLf & “then click ““Save Scenario”“ first.”)

 .Comment.Shape.TextFrame.AutoSize = True
 End With

 Call StatusReset

 111

 With Range(DL_BTN_SAVE)
 Set btnSave = ActiveSheet.Buttons.Add(.Left, .Top, .Width, .Height)
 End With
 btnSave.OnAction = “DownloadSave”
 btnSave.Characters.Text = “Save Scenario”

 With Range(DL_BTN_SAVE_HELP)
 .Value = “?”
 .HorizontalAlignment = xlCenter
.AddComment (“Saves this scenario work-in-progress as a new worksheet.” & vbCrLf &
vbCrLf &”NOTE! All numbers and charts on the new worksheet will be static” & vbCrLf
& “and will not reflect changes in any other portion of this spreadsheet.”)
 .Comment.Shape.TextFrame.AutoSize = True
 End With

 ‘ **
 ‘ Restore control to the user.
 Call StatusReset
 Application.CutCopyMode = False
 Application.DisplayAlerts = saveDisplayAlerts
 Application.ScreenUpdating = True
End Sub
‘ **
‘ MakeModelPage(PhaseString)
‘ Input: integer, referring to the numbered phase to build;
‘ 1-based, meaning “1” refers to Primary in the example usage,
‘ as defined in PhaseRef, first column
‘ Output: deletes Model# worksheet if it exists,
‘ copies from previous Model sheet if it exists, MasterDB otherwise,
‘ Adds remaining columns and formulas
‘ Assumptions:
‘ - StatusBar work is being done and StatusInitiate has been run
‘ - Application.ScreenUpdating (and similar visuals-controllers) have been set
‘ **
Sub MakeModelPage(ByVal iPhase As Integer)
 Dim bCopyMaster As Boolean
 Dim wsModel As Worksheet
 Dim rPhaseRef As Range, rSkillsList As Range, sTable As String
 Dim iIndexS As Integer, iIndexP As Integer
 Dim aHeaders() As String, aFormulas() As String
 Dim sDegrades As String
 Dim iLastCol As Integer ‘ used to append to the DataTable
 Dim sPhase As String
 Dim sTemp As String

 112

 Set rPhaseRef = Range(“PhaseRef”)
 Set rSkillsList = Range(“SkillsList”)

 sPhase = rPhaseRef(iPhase, 1)
 If WorksheetExists(“Model” & iPhase) Then
 Application.DisplayAlerts = False
 Sheets(“Model” & iPhase).Delete
 End If ‘ if worksheetexists(“Model” & iphase) ...

 Call StatusUpdate

 If WorksheetExists(“Model” & (iPhase - 1)) Then
 bCopyMaster = False
 ‘ previous model exists, copying it
 Sheets(“Model” & (iPhase - 1)).Copy after:=Sheets(“Model” & (iPhase - 1))
 Else
 bCopyMaster = True
 ‘ first time or previous model does not exist, copying MasterDB
 Sheets(“MasterDB”).Copy after:=Sheets(“MasterDB”)
 End If ‘ If WorksheetExists(“Model” & (iPhase - 1)) ...

 Set wsModel = ActiveSheet

 Call StatusUpdate

 With wsModel
 .Name = “Model” & iPhase
 .ListObjects(1).Unlist ‘ remove the datatable
 .ListObjects.Add(xlSrcRange, _
 Intersect(Range(STARTCELL_MASTERDB).CurrentRegion,
Range(STARTCELL_MASTERDB).CurrentRegion.Offset(1, 0)), , xlYes).Name =
“Table” & iPhase
 End With

 sTable = “Table” & iPhase

 ReDim aFormulas(5 + 3 * rPhaseRef.Rows.Count) As String ‘ magic number: 5
includes model, BL min, BL max, WI hours, and HourDiff
 ReDim aHeaders(5 + 3 * rPhaseRef.Rows.Count) As String ‘... and 3* is because we
have 3 columns per phase: ph, phmin, and platform

 iLastCol = Range(“Table” & iPhase).Columns.Count

 If bCopyMaster Then

 113

 For iIndexP = 1 To rPhaseRef.Rows.Count
 Call StatusUpdate

 sDegrades = sDegrades & ,” Degrades” & iIndexP
 Next iIndexP
 sDegrades = Mid(sDegrades, 3)

 ‘ starting “from scratch,” need to build in all new columns
 ‘ the initial block of columns, static, throw it at the end of the table
 Range(sTable & “[#Headers]”).Offset(0, Range(sTable &
“[#Headers]”).Columns.Count).Resize(1, columnsize:=7).Value = Array(_
 “Model,” _
 “Baseline Min,” _
 “Baseline Max,” _
 “What If Hours,” _
 “Hour Difference,” _
 “Baseline Cost,” _
 “What If Cost”)

 For iIndexP = 1 To rPhaseRef.Rows.Count
 Call StatusUpdate
 ‘ added per-phase
 Range(sTable & “[#Headers]”).Offset(0, Range(sTable &
“[#Headers]”).Columns.Count).Resize(1, columnsize:=3).Value = Array(_
 “Phase “ & iIndexP, _
 “Phase Min “ & iIndexP, _
 “Platform “ & iIndexP)
 Next iIndexP

 For iIndexS = 1 To rSkillsList.Rows.Count
 Call StatusUpdate
 ‘ added per-skill
 ‘ magic number: 6 is the number of columns we’re adding here
 Range(sTable & “[[#Headers],[Skill “ & iIndexS & “]]”).Offset(0, 1).Resize(1,
6).EntireColumn.Insert
 Range(sTable & “[[#Headers],[Skill “ & iIndexS & “]]”).Offset(0, 1).Resize(1,
6).Value = Array(_
 “Degr Skill “ & iIndexS, _
 “Baseline % Total “ & iIndexS, _
 “Baseline GALE “ & iIndexS, _
 “What If % Total “ & iIndexS, _
 “What If GALE “ & iIndexS, _
 “Difference “ & iIndexS)
 Next iIndexS

 114

 For iIndexP = 1 To rPhaseRef.Rows.Count
 Call StatusUpdate
 ‘ added per-phase
 Range(sTable & “[Phase “ & iIndexP & “]”).Resize(1, columnsize:=3).Value =
Array(_
 “=([@Phase] = “““ & rPhaseRef(iIndexP, 1) & “““) * [@[Baseline Hours]],” _
 “=([@Phase] = “““ & rPhaseRef(iIndexP, 1) & “““) * [@[Baseline Min]],” _
 “=VLOOKUP([@Function], CHOOSE(MATCH([@Phase],
INDEX(PhaseRef,,1), 0), “ & sDegrades & “), “ & _
 “IF([@[Flt or Sim]]=““Flt”,” 0, 1) + “ & 2 * (rPhaseRef.Rows.Count + 1) - 2 *
iIndexP + 1 & ,” FALSE)”)
 Range(sTable & “[Platform “ & iIndexP & “]”).Resize(1, 1) = 0

 With Range(sTable & “[[#Headers],[Phase “ & iIndexP & “]]”).Offset(-1, 0)
 .Resize(1, 1) = rPhaseRef(iIndexP, 1)
 .Resize(1, 3).Merge
 End With
 Next iIndexP
 End If ‘ If bCopyMaster ...

 ‘ initial block
 ‘ Model, Baseline Min, Baseline Max, What If Hours, Hour Difference, Baseline Cost,
What If Cost
 Range(sTable & “[Model]”).Resize(1, columnsize:=7).Value = Array(_
 “,” _
 “=LOOKUP([@[Baseline Hours]], {0, 0.5, 1}),” _
 “=VLOOKUP([@Phase], PhaseRef, 3, FALSE) * [@[Baseline Hours]],” _
 “=DownloadTable[@[Phase “ & iPhase & “]],” _
 “=[@[What If Hours]] - [@[Phase “ & iPhase & “]],” _
 “=([@Phase] = “““ & sPhase & “““) * IF([Flt or Sim] = ““Flt”,” INDEX(PhaseRef,
“ & iPhase & ,” 4), INDEX(PhaseRef, “ & iPhase & ,” 5)) * [@[Baseline Hours]],” _
 “=IF([Flt or Sim] = ““Flt”,” INDEX(PhaseRef, “ & iPhase & ,” 4),
INDEX(PhaseRef, “ & iPhase & ,” 5)) * [@[What If Hours]]”)
 Range(sTable & “[Model]”).Resize(1, columnsize:=5).Formula = Range(sTable &
“[Model]”).Resize(1, columnsize:=5).Value

 For iIndexS = 1 To rSkillsList.Rows.Count
 Call StatusUpdate
 ‘ added per-skill
 ‘ leave out “Difference #” since it’s being corrupted as we mod row 1, so we’ll add
it later
 Range(sTable & “[Degr Skill “ & iIndexS & “]”).Resize(1,
columnsize:=5).FormulaR1C1 = Array(_
 “=[@[Platform “ & iPhase & “]] * [@[Skill “ & iIndexS & “]],” _
 “=[@[Phase “ & iPhase & “]] * [@[Degr Skill “ & iIndexS & “]] / “ & _

 115

 “SUMPRODUCT([Phase “ & iPhase & “], [Degr Skill “ & iIndexS & “]),” _
 “=(INDEX(Firewalls, “ & (2 * iPhase) & ,” “ & iIndexS & “) -
INDEX(Firewalls, “ & (2 * iPhase - 1) & ,” “ & iIndexS & “)) * “ & _
 “[@[Baseline % Total “ & iIndexS & “]] + R[-1]C,” _
 “=([@[What If Hours]] * [@[Degr Skill “ & iIndexS & “]]) / “ & _
 “SUMPRODUCT([Phase “ & iPhase & “], [Degr Skill “ & iIndexS & “]),” _
 “=(INDEX(Firewalls, “ & (2 * iPhase) & ,” “ & iIndexS & “) -
INDEX(Firewalls, “ & (2 * iPhase - 1) & ,” “ & iIndexS & “)) * “ & _
 “[@[What If % Total “ & iIndexS & “]] + R[-1]C”)
 Range(sTable & “[Degr Skill “ & iIndexS & “]”).Resize(1,
columnsize:=6).FormulaR1C1 = Range(sTable & “[Degr Skill “ & iIndexS &
“]”).Resize(columnsize:=6).Value

 Application.AutoCorrect.AutoFillFormulasInLists = False
 Range(sTable & “[Baseline GALE “ & iIndexS & “]”).Resize(1, 1).Formula =
“=INDEX(Firewalls, “ & (2 * iPhase - 1) & ,” “ & iIndexS & “)”
 Union(_
 Range(sTable & “[Baseline GALE “ & iIndexS & “]”).Resize(1, 1), _
 Range(sTable & “[What If GALE “ & iIndexS & “]”).Resize(1, 1)).Formula =
“=INDEX(Firewalls, “ & (2 * iPhase - 1) & ,” “ & iIndexS & “)”
 If iPhase > 1 Then
 Range(sTable & “[What If GALE “ & iIndexS & “]”).Resize(1, 1).Formula = _
 Range(sTable & “[What If GALE “ & iIndexS & “]”).Resize(1, 1).Formula &
“ + “ & _
 “INDEX(Table” & (iPhase - 1) & “[Difference “ & iIndexS & “], count(Table”
& (iPhase - 1) & “[Difference “ & iIndexS & “]))”
 End If
 Application.AutoCorrect.AutoFillFormulasInLists = True

 Range(sTable & “[Difference “ & iIndexS & “]”).FormulaR1C1 = “=RC[-1] - RC[-
3]”

 Range(sTable & “[[#Headers],[Skill “ & iIndexS & “]]”).Offset(-1, 0).Resize(1,
7).Merge ‘ magic number: 7 is the number columns per Skill
 Next iIndexS

 Range(sTable).EntireColumn.Hidden = True

 Dim rRng As Range
 Set rRng = Range(“A1”) ‘ random
 For iIndexS = 1 To rSkillsList.Rows.Count
 Set rRng = Union(rRng, _
 Range(sTable & “[Baseline GALE “ & iIndexS & “]”), _
 Range(sTable & “[What If GALE “ & iIndexS & “]”))
 Next iIndexS

 116

 rRng.NumberFormat = “0.0000”
 Set rRng = Union(rRng, Range(sTable & “[Blocks]”))
 With rRng.EntireColumn
 .Hidden = False
 .autofit
 End With

 Range(sTable).NumberFormat = “0.0000”
End Sub

‘ **
‘ DownloadReset()
‘ Input: none
‘ Output: the columns DownloadTable[Phase #] are reset to their original values.
‘ **
Sub DownloadReset()
 ‘ This banks on the fact that the Phase columns are collocated and
 ‘ the OrigPhase columns are immediately following them.
 Range(“DownloadTable[Phase
1]”).Resize(columnsize:=Range(“PhaseRef”).Rows.Count).Value = _
 Range(“DownloadTable[OrigPhase
1]”).Resize(columnsize:=Range(“PhaseRef”).Rows.Count).Value
End Sub

‘ **
‘ DownloadSave()
‘ Input: none
‘ Output: the “Download Page” worksheet is cloned and all formulas
‘ within it are converted to values only (i.e., static).
‘ Subsequent saves will rename the new worksheet numerically
‘ such that scenarios are not overwritten.
‘ **
Sub DownloadSave()
 Dim wsNew As Worksheet
 Dim iCount As Integer, iTmp As Integer

 Application.ScreenUpdating = False

 With ActiveWorkbook
 .Sheets(“Download Page”).Copy after:=.Sheets(“Download Page”)
 Set wsNew = .Sheets(.Sheets(“Download Page”).Index + 1)
 End With

 iCount = 1
 For iTmp = 1 To ActiveWorkbook.Sheets.Count

 117

 If Mid(ActiveWorkbook.Sheets(iTmp).Name, 1, 9) = “Scenario “ Then
 ‘ this is certainly not a flawless method ...
 iCount = WorksheetFunction.Max(iCount, 1 +
Int(Mid(ActiveWorkbook.Sheets(iTmp).Name, 10)))
 End If
 Next iTmp
 wsNew.Name = “Scenario “ & iCount

 If wsNew.Names.Count > 0 Then
 For iTmp = wsNew.Names.Count To 1 Step -1 ‘ backwards since deleting changes
all indexes
 Range(wsNew.Names(iTmp)).Value = Range(wsNew.Names(iTmp)).Value
 Next iTmp
 End If ‘ If wsNew.Names.Count > 0 ...

 If wsNew.Buttons.Count > 0 Then
 For iTmp = wsNew.Buttons.Count To 1 Step -1 ‘ backwards since deleting changes
all indexes
 wsNew.Buttons(iTmp).Delete
 Next iTmp
 End If
 With Union(wsNew.Range(DL_BTN_SAVE_HELP),
wsNew.Range(DL_BTN_RESET_HELP))
 .ClearContents
 .ClearComments
 .Clear
 End With

 With wsNew.Range(DL_BTN_SAVE).Resize(1, 1)
 .Value = “Scenario saved:”
 .Resize(1, 3).Merge
 .Offset(1, 0).Value = Date
 .Offset(1, 0).Resize(1, 3).Merge
 .Offset(2, 0).Value = Time
 .Offset(2, 0).Resize(1, 3).Merge
 End With

 Sheets(“Download Page”).Activate

 Application.ScreenUpdating = True

End Sub

‘ **
‘ FormatTable()

 118

‘ Input: a range to be formatted; just the data, the headers are found by expanding
‘ the selection.
‘ Result: Formatted as a table.
‘ Arguments:
‘ rRange := range object to format, not including headers which will
‘ be found with .CurrentRegion
‘ bDataEntry := if True, this range is meant for user data entry and
‘ formatted with a yellow background; if False, no color.
‘ (Default: True)
‘ iNumDigits := the number of decimal digits to include, default = 4.
‘ *Align := { xlLeft, xlCenter, xlRight }
‘ An initial “CurrentRegion” is taken of the range, causing it to expand to include
‘ all non-empty cells in a square, out to a “square moat” of empty cells. All
‘ cells are initially formatted like a header, and then the original range is
‘ properly formatted as data.
‘ **

Sub FormatTable(ByVal rRange As Range, Optional ByVal bDataEntry As Boolean =
True, _
 Optional ByVal iNumDigits As Integer = 4, Optional ByVal rowHeaderAlign
As Integer = xlCenter, _
 Optional ByVal columnHeaderAlign As Integer = xlCenter, Optional ByVal
cellAlign As Integer = xlCenter, _
 Optional ByVal ExpandRange As Boolean = True)
 Dim rTmp As Range

 If ExpandRange Then
 Set rTmp = rRange.CurrentRegion
 Else
 Set rTmp = rRange
 End If

 With rTmp.Font
 .Bold = True
 .Name = “Calibri”
 .Size = 12
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ThemeColor = xlThemeColorLight1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontMinor

 119

 End With

 rRange.NumberFormat = “0.” & String(iNumDigits, “0”)
 rRange.HorizontalAlignment = cellAlign
 rRange.Offset(-1, 0).Resize(rowsize:=1).HorizontalAlignment = columnHeaderAlign
 rRange.Offset(0, -1).Resize(columnsize:=1).HorizontalAlignment = rowHeaderAlign

 With rRange.Font
 .Bold = False
 End With

 With rRange.Interior
 If bDataEntry Then
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 .Color = 10092543
 .TintAndShade = 0
 .PatternTintAndShade = 0
 Else
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 .ThemeColor = xlThemeColorDark1
 .TintAndShade = -0.149998474074526
 .PatternTintAndShade = 0
 End If
 End With

 Dim myBorders() As Variant, item As Variant
 myBorders = Array(xlEdgeLeft, _
 xlEdgeTop, _
 xlEdgeBottom, _
 xlEdgeRight)
 For Each item In myBorders
 With rRange.Borders(item)
 .LineStyle = xlContinuous
 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlMedium
 End With
 Next item

 myBorders = Array(xlInsideVertical, xlInsideHorizontal)
 For Each item In myBorders
 With rRange.Borders(item)
 .LineStyle = xlContinuous

 120

 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlHairline
 End With
 Next item
End Sub

‘ **
‘ WorksheetExists
‘ Input: the name of a worksheet
‘ Output: True if a sheet with that name exists, False otherwise
‘ **

Public Function WorksheetExists(ByVal WorksheetName As String) As Boolean
 On Error Resume Next
 WorksheetExists = (Sheets(WorksheetName).Name <> ““)
 On Error GoTo 0
End Function

‘ **
‘ TableExists
‘ Input: the name of a (data) table, (previously known as an AutoFilter table)
‘ Output: True if a table with that name exists, False otherwise
‘ **
Public Function TableExists(ByVal TableName As String) As Boolean
 On Error Resume Next
 TableExists = (ActiveSheet.ListObject(TableName).Name <> ““)
 On Error GoTo 0
End Function
‘ **
‘ RangeNameExists
‘ Input: string, the name of a range
‘ Output: True if a range with that name exists locally or globally, false otherwise
‘ **
Public Function RangeNameExists(ByVal RangeName As String) As Boolean
 On Error Resume Next
 RangeNameExists = False
 RangeNameExists = Len(Range(RangeName).Address) <> 0
End Function
‘ **
‘ StatusInitiate
‘ Call this in the beginning of any function that will be using the status bar
‘ to ensure that the global variable is properly defined. (This would not be
‘ necessary if VBA allowed Public Const Array.)

 121

‘ **
Sub StatusInitiate()
 SB_Message = ““
 SB_Index = 0
 If Not IsArray(SB_HeartBeat) Then
 SB_HeartBeat = Array(“|o--------|,” “|-o-------|,” “|--o------|,” “|---o-----|,” “|----o----
|,” “|-----o---|,” “|------o--|,” “|-------o-|,” _
 “|--------o|,” “|-------o-|,” “|------o--|,” “|-----o---|,” “|----o----|,” “|---o-----
|,” “|--o------|,” “|-o-------|”)
 ‘‘‘ Alternatives:
 ‘ Array(.”,” “o,” “O,” “o,” .”,” “ “)
 ‘ Array(“\,” “|,” “/,” “-”)
 End If
End Sub
‘ **
‘ StatusUpdate
‘ If called with a message, update to that message. With no arguments,
‘ the previous message is retained and that “heartbeat” is incremented.
‘ SB_HeartBeat should be an array that incrementally shows some form of
‘ progress. For aesthetics, it is helpful to keep all strings within the
‘ array of equal size; keep in mind that the font is a variable-width font,
‘ so a string of three spaces and a string of three M’s are different
‘ sizes.
‘ **
Sub StatusUpdate(Optional ByVal sMessage As Variant)
 SB_Index = (SB_Index + 1) Mod (UBound(SB_HeartBeat) + 1)
 If Not IsMissing(sMessage) Then
 SB_Message = sMessage
 End If
 Application.StatusBar = “Progress:” & SB_HeartBeat(SB_Index) & “ “ &
SB_Message
 DoEvents
End Sub

‘ **
‘ StatusReset
‘ I’m not certain this is necessary, but it clears the statusbar which
‘ eventually shows “Ready.”
‘ **
Sub StatusReset()
 Application.StatusBar = False
End Sub

Sub StatusBarTest()
 Dim iCounter As Integer, iIndex As Integer, sMessages

 122

 On Error GoTo ErrHandler:
 Call StatusInitiate
 Application.ScreenUpdating = False
 sMessages = Array(“Refining MasterDB ...,” “Starting Download Page ...,” _
 “Making Primary Model ...,” “Making Intermediate Model ...,” _
 “Making Advanced Model ...,” “Making FRS Model ...,” _
 “Finishing Download Page ...”)
 For iCounter = 0 To 200
 If (iCounter Mod 200 / (UBound(sMessages) + 1)) = 0 Then
 Call StatusUpdate(sMessages(Int(iCounter / (200 / (UBound(sMessages) + 1)))))
 Else
 Call StatusUpdate
 End If
 Sleep (40)
 Next iCounter
ErrHandler:
 On Error GoTo 0
 Call StatusReset
 Application.ScreenUpdating = True
End Sub

‘ **
‘ AddrRow(string)
‘ Input: an address string in A1 format, e.g. “C4” or “AQ92”
‘ Output: only the row (numerical) component, e.g. “4” or “92”
‘ Note: input can be either relative (“C4”) or absolute (“C4”), though
‘ output will always output relative-only
‘ **
Function AddrRow(sRange As String)
 With CreateObject(“vbscript.regexp”)
 .Global = False
 .Pattern = “([0–9]+)”
 If .test(sRange) Then
 AddrRow = .Execute(sRange)(0)
 Else
 AddrRow = sRange
 End If
 End With
End Function

‘ **
‘ AddrCol(string)
‘ Input: an address string in A1 format, e.g. “C4” or “AQ92”
‘ Output: only the column (alphabetic) component, e.g. “C” or “AQ”
‘ Note: input can be either relative (“C4”) or absolute (“C4”), though

 123

‘ output will always output relative-only
‘ **
Function AddrCol(sRange As String)
 With CreateObject(“vbscript.regexp”)
 .ignorecase = True
 .Global = False
 .Pattern = “([A-Z]+)”
 If .test(sRange) Then
 AddrCol = .Execute(sRange)(0)
 Else
 AddrCol = sRange
 End If
 End With
End Function

‘ **
‘ AddrAbs(string)
‘ Input: an address string in A1 format, e.g. “C4” or “AQ92”
‘ Output: an absolute version of it, e.g. “C4” or “AQ92”
‘ Note: input can be either absolute or relative.
‘ **
Function AddrAbs(sRange As String)
 AddrAbs = Range(sRange).Address(rowabsolute:=True, columnabsolute:=True)
End Function

‘ **
‘ AddrRel(string)
‘ Input: an address string in A1 format, e.g. “C$4” or “$AQ$92”
‘ Output: a relative version of it, e.g. “C4” or “AQ92”
‘ Note: input can be either absolute or relative.
‘ **
Function AddrRel(sRange As String)
 AddrAbs = Range(sRange).Address(rowabsolute:=False, columnabsolute:=False)
End Function

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX F: REQUIREMENT / ELEMENT MAPPING

Table 4. NAPA Model Elements Mapped to Requirements (Part 1)

 126

Table 5. NAPA Model Elements Mapped to Requirements (Part 2)

 127

LIST OF REFERENCES

Commander Naval Air Forces. 2012. “Naval Aviation Mission.”. Accessed December 15,
2012. http://www.cnaf.navy.mil/nae/.

Chief of Naval Air Training. “CNATRA: Training Future Aerial Warriors.” Accessed
October 12, 2012. http://www.cnatra.navy.mil.

Blanchard, Benjamin S., and Wolter J Fabrycky. 2011, Systems Engineering and
Analysis. (5th ed.). Upper Saddle River: Prentice Hall.

Bovey, Rob, Dennis Wallentin, Steven Bullen, and John Green. 2009. Professional Excel
Development: The Definitive Guide to Developing Applications Using Microsoft
Excel, VBA, and .NET. Boston: Pearson Education, 2009.

Langford, Gary O. 2012, Engineering Systems Integration: Theory, Metrics, and
Methods.(1st ed.). Boca Raton: CRC Press.

Walkenbach, John. 2010. Excel 2010: Power Programming with VBA. Indianapolis , IN:
Wiley Publishing.

 128

THIS PAGE INTENTIONALLY LEFT BLANK

 129

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

